A Generalized Hopfield Network for Nonsmooth Constrained Convex Optimization: Lie Derivative Approach

被引:112
作者
Li, Chaojie [1 ]
Yu, Xinghuo [1 ]
Huang, Tingwen [2 ]
Chen, Guo [3 ]
He, Xing [4 ]
机构
[1] RMIT Univ, Sch Elect & Comp Engn, Melbourne, Vic 3000, Australia
[2] Texas A&M Univ, Doha 23874, Qatar
[3] Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW 2006, Australia
[4] Southwest Univ, Sch Elect & Informat Engn, Chongqing 400715, Peoples R China
基金
澳大利亚研究理事会;
关键词
Constraints; enhanced Fritz John conditions; Filippov solutions; global optimization; Hopfield network; Lie derivative; RECURRENT NEURAL-NETWORK; ACTIVATION FUNCTION; PSEUDOCONVEX OPTIMIZATION; VARIATIONAL-INEQUALITIES; PROGRAMMING-PROBLEMS; TIME; DESIGN; SYSTEMS;
D O I
10.1109/TNNLS.2015.2496658
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a generalized Hopfield network for solving general constrained convex optimization problems. First, the existence and the uniqueness of solutions to the generalized Hopfield network in the Filippov sense are proved. Then, the Lie derivative is introduced to analyze the stability of the network using a differential inclusion. The optimality of the solution to the nonsmooth constrained optimization problems is shown to be guaranteed by the enhanced Fritz John conditions. The convergence rate of the generalized Hopfield network can be estimated by the second-order derivative of the energy function. The effectiveness of the proposed network is evaluated on several typical nonsmooth optimization problems and used to solve the hierarchical and distributed model predictive control four-tank benchmark.
引用
收藏
页码:308 / 321
页数:14
相关论文
共 45 条
[1]   A comparative analysis of distributed MPC techniques applied to the HD-MPC four-tank benchmark [J].
Alvarado, I. ;
Limon, D. ;
Munoz de la Pena, D. ;
Maestre, J. M. ;
Ridao, M. A. ;
Scheu, H. ;
Marquardt, W. ;
Negenborn, R. R. ;
De Schutter, B. ;
Valencia, F. ;
Espinosa, J. .
JOURNAL OF PROCESS CONTROL, 2011, 21 (05) :800-815
[2]  
[Anonymous], 2006, ADV NEURAL INFORM PR
[3]  
[Anonymous], 1999, Athena scientific Belmont
[4]   Controller design via nonsmooth multidirectional search [J].
Apkarian, P ;
Noll, D .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2006, 44 (06) :1923-1949
[5]  
Bacciotti A., 1999, ESAIM. Control, Optimisation and Calculus of Variations, V4, P361, DOI 10.1051/cocv:1999113
[6]   Convergence and Rate Analysis of Neural Networks for Sparse Approximation [J].
Balavoine, Aurele ;
Romberg, Justin ;
Rozell, Christopher J. .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2012, 23 (09) :1377-1389
[7]   Enhanced Fritz John conditions for convex programming [J].
Bertsekas, DP ;
Ozdaglar, AE ;
Tseng, P .
SIAM JOURNAL ON OPTIMIZATION, 2006, 16 (03) :766-797
[8]   Neural Network for Solving Constrained Convex Optimization Problems With Global Attractivity [J].
Bian, Wei ;
Xue, Xiaoping .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2013, 60 (03) :710-723
[9]   Smoothing Neural Network for Constrained Non-Lipschitz Optimization With Applications [J].
Bian, Wei ;
Chen, Xiaojun .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2012, 23 (03) :399-411
[10]   Recurrent Neural Network for Non-Smooth Convex Optimization Problems With Application to the Identification of Genetic Regulatory Networks [J].
Cheng, Long ;
Hou, Zeng-Guang ;
Lin, Yingzi ;
Tan, Min ;
Zhang, Wenjun Chris ;
Wu, Fang-Xiang .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (05) :714-726