Rendering a Prescribed Subset Invariant for Polynomial Systems by Dynamic State-Feedback Compensator

被引:7
作者
Yuno, Tsuyoshi [1 ]
Ohtsuka, Toshiyuki [2 ]
机构
[1] Kyushu Univ, Fukuoka 8190395, Japan
[2] Kyoto Univ, Kyoto 6068501, Japan
来源
IFAC PAPERSONLINE | 2016年 / 49卷 / 18期
关键词
Algebraicapproaches; Nonlinearcontrolsystems; Controlsystemdesign; Dynamicalsystems;
D O I
10.1016/j.ifacol.2016.10.305
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper derives a sufficient condition for the existence of a dynamic state-feedback compensator, for a polynomial system, such that a prescribed subset defined by an algebraic inequality is invariant for the resulting closed-loop system. Moreover, we present an algorithm for exactly computing such a compensator. The algorithm consists of finitely-many arithmetic operations of polynomials. (C) 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1042 / 1047
页数:6
相关论文
共 20 条
  • [1] Squaring the circle: An algorithm for generating, polyhedral invariant sets from ellipsoidal ones
    Alessio, A.
    Lazar, M.
    Bemporad, A.
    Heemels, W. P. M. H.
    [J]. AUTOMATICA, 2007, 43 (12) : 2096 - 2103
  • [2] [Anonymous], 1989, ELEMENTS MATH ALGEBR
  • [3] [Anonymous], 1998, USING ALGEBRAIC GEOM, DOI DOI 10.1007/978-1-4757-6911-1
  • [4] Artin M., 2011, Algebra
  • [5] Atiyah M. F., 1969, Introduction to Commutative Algebra
  • [6] Computation of polytopic invariants for polynomial dynamical systems using linear programming
    Ben Sassi, Mohamed Amin
    Girard, Antoine
    [J]. AUTOMATICA, 2012, 48 (12) : 3114 - 3121
  • [7] Set invariance in control
    Blanchini, F
    [J]. AUTOMATICA, 1999, 35 (11) : 1747 - 1767
  • [8] Bochnak J., 1998, Ergeb. Math. Grenzgeb.
  • [9] Colombo G., 1992, DIFFER INTEGRAL EQU, V5, P173
  • [10] Cox D., 1997, Ideals, Varieties, and Algorithms