Fundamental limits for reciprocal and nonreciprocal non-Hermitian quantum sensing

被引:44
作者
Bao, Liying [1 ,2 ]
Qi, Bo [1 ,2 ]
Dong, Daoyi [3 ]
Nori, Franco [4 ,5 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Key Lab Syst & Control, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Univ New South Wales, Sch Engn & Informat Technol, Canberra, ACT 2600, Australia
[4] RIKEN, Theoret Quantum Phys Lab, Saitama 3510198, Japan
[5] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
基金
日本学术振兴会; 日本科学技术振兴机构; 中国国家自然科学基金;
关键词
EXCEPTIONAL POINTS; PHYSICS; STATES;
D O I
10.1103/PhysRevA.103.042418
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Non-Hermitian dynamics has been widely studied to enhance the precision of quantum sensing; and nonreciprocity can be a powerful resource for non-Hermitian quantum sensing, as nonreciprocity allows to arbitrarily exceed the fundamental bound on the measurement rate of any reciprocal sensors. Here we establish fundamental limits on signal-to-noise ratio for reciprocal and nonreciprocal non-Hermitian quantum sensing. In particular, for two-mode linear systems with two coherent drives, an approximately attainable uniform bound on the best possiblemeasurement rate per photon is derived for both reciprocal and nonreciprocal sensors. This bound is only related to the coupling coefficients and, in principle, can be made arbitrarily large. Our results thus demonstrate that a conventional reciprocal sensor with two drives can simulate any nonreciprocal sensor. This work also demonstrates a clear signature on how the excitation signals affect the signal-to-noise ratio in non-Hermitian quantum sensing.
引用
收藏
页数:13
相关论文
共 60 条
[31]   Pump-Induced Exceptional Points in Lasers [J].
Liertzer, M. ;
Ge, Li ;
Cerjan, A. ;
Stone, A. D. ;
Tuereci, H. E. ;
Rotter, S. .
PHYSICAL REVIEW LETTERS, 2012, 108 (17)
[32]   Electrically Driven Nonreciprocity Induced by Interband Photonic Transition on a Silicon Chip [J].
Lira, Hugo ;
Yu, Zongfu ;
Fan, Shanhui ;
Lipson, Michal .
PHYSICAL REVIEW LETTERS, 2012, 109 (03)
[33]   Second-Order Topological Phases in Non-Hermitian Systems [J].
Liu, Tao ;
Zhang, Yu-Ran ;
Ai, Qing ;
Gong, Zongping ;
Kawabata, Kohei ;
Ueda, Masahito ;
Nori, Franco .
PHYSICAL REVIEW LETTERS, 2019, 122 (07)
[34]   Controllable optical response by modifying the gain and loss of a mechanical resonator and cavity mode in an optomechanical system [J].
Liu, Yu-Long ;
Wu, Rebing ;
Zhang, Jing ;
Ozdemir, Sahin Kaya ;
Yang, Lan ;
Nori, Franco ;
Liu, Yu-xi .
PHYSICAL REVIEW A, 2017, 95 (01)
[35]   Metrology with PT-Symmetric Cavities: Enhanced Sensitivity near the PT-Phase Transition [J].
Liu, Zhong-Peng ;
Zhang, Jing ;
Ozdemir, Sahin Kaya ;
Peng, Bo ;
Jing, Hui ;
Lu, Xin-You ;
Li, Chun-Wen ;
Yang, Lan ;
Nori, Franco ;
Liu, Yu-xi .
PHYSICAL REVIEW LETTERS, 2016, 117 (11)
[36]   Nonreciprocal Photon Transmission and Amplification via Reservoir Engineering [J].
Metelmann, A. ;
Clerk, A. A. .
PHYSICAL REVIEW X, 2015, 5 (02)
[37]  
Moiseyev N., 2011, Non-Hermitian Quantum Mechanics
[38]   Density of states in the non-Hermitian Lloyd model [J].
Mudry, C ;
Brouwer, PW ;
Halperin, BI ;
Gurarie, V ;
Zee, A .
PHYSICAL REVIEW B, 1998, 58 (20) :13539-13543
[39]   Topological photonics [J].
Ozawa, Tomoki ;
Price, Hannah M. ;
Amo, Alberto ;
Goldman, Nathan ;
Hafezi, Mohammad ;
Lu, Ling ;
Rechtsman, Mikael C. ;
Schuster, David ;
Simon, Jonathan ;
Zilberberg, Oded ;
Carusotto, Iacopo .
REVIEWS OF MODERN PHYSICS, 2019, 91 (01)
[40]   Parity-time symmetry and exceptional points in photonics [J].
Ozdemir, S. K. ;
Rotter, S. ;
Nori, F. ;
Yang, L. .
NATURE MATERIALS, 2019, 18 (08) :783-798