Evaluating atmospheric mercury (Hg) uptake by vegetation in a chemistry-transport model

被引:0
作者
Feinberg, Aryeh [1 ]
Dlamini, Thandolwethu [1 ]
Jiskra, Martin [2 ]
Shah, Viral [3 ]
Selin, Noelle E. [1 ,4 ]
机构
[1] MIT, Inst Data Syst & Soc, Cambridge, MA 02139 USA
[2] Univ Basel, Environm Geosci, Basel, Switzerland
[3] Harvard Univ, Harvard John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[4] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA
基金
美国国家科学基金会; 瑞士国家科学基金会;
关键词
PARTICLE DRY DEPOSITION; LAND-USE; MONITORING SITES; REDOX CHEMISTRY; WET DEPOSITION; CLIMATE; AMAZON; FOREST; SIMULATION; EMISSIONS;
D O I
10.1039/d2em00032f
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Mercury (Hg), a neurotoxic heavy metal, is transferred to marine and terrestrial ecosystems through atmospheric transport. Recent studies have highlighted the role of vegetation uptake as a sink for atmospheric elemental mercury (Hg-0) and a source of Hg to soils. However, the global magnitude of the Hg-0 vegetation uptake flux is highly uncertain, with estimates ranging 1000-4000 Mg per year. To constrain this sink, we compare simulations in the chemical transport model GEOS-Chem with a compiled database of litterfall, throughfall, and flux tower measurements from 93 forested sites. The prior version of GEOS-Chem predicts median Hg-0 dry deposition velocities similar to litterfall measurements from Northern hemisphere temperate and boreal forests (similar to 0.03 cm s(-1)), yet it underestimates measurements from a flux tower study (0.04 cm s(-1)vs. 0.07 cm s(-1)) and Amazon litterfall (0.05 cm s(-1)vs. 0.17 cm s(-1)). After revising the Hg-0 reactivity within the dry deposition parametrization to match flux tower and Amazon measurements, GEOS-Chem displays improved agreement with the seasonality of atmospheric Hg-0 observations in the Northern midlatitudes. Additionally, the modelled bias in Hg-0 concentrations in South America decreases from +0.21 ng m(-3) to +0.05 ng m(-3). We calculate a global flux of Hg-0 dry deposition to land of 2276 Mg per year, approximately double previous model estimates. The Amazon rainforest contributes 29% of the total Hg-0 land sink, yet continued deforestation and climate change threatens the rainforest's stability and thus its role as an important Hg sink. In an illustrative worst-case scenario where the Amazon is completely converted to savannah, GEOS-Chem predicts that an additional 283 Mg Hg per year would deposit to the ocean, where it can bioaccumulate in the marine food chain. Biosphere-atmosphere interactions thus play a crucial role in global Hg cycling and should be considered in assessments of future Hg pollution.
引用
收藏
页码:1303 / 1318
页数:16
相关论文
共 87 条
[21]   Mass-Independent Fractionation of Even and Odd Mercury Isotopes during Atmospheric Mercury Redox Reactions [J].
Fu, Xuewu ;
Jiskra, Martin ;
Yang, Xu ;
Marusczak, Nicolas ;
Enrico, Maxime ;
Chmeleff, Jerome ;
Heimburger-Boavida, Lars-Eric ;
Gheusi, Francois ;
Sonke, Jeroen E. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2021, 55 (14) :10164-10174
[22]   Depletion of atmospheric gaseous elemental mercury by plant uptake at Mt. Changbai, Northeast China [J].
Fu, Xuewu ;
Zhu, Wei ;
Zhang, Hui ;
Sommar, Jonas ;
Yu, Ben ;
Yang, Xu ;
Wang, Xun ;
Lin, Che-Jen ;
Feng, Xinbin .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (20) :12861-12873
[23]   Amazonia as a carbon source linked to deforestation and climate change [J].
Gatti, Luciana, V ;
Basso, Luana S. ;
Miller, John B. ;
Gloor, Manuel ;
Domingues, Lucas Gatti ;
Cassol, Henrique L. G. ;
Tejada, Graciela ;
Aragao, Luiz E. O. C. ;
Nobre, Carlos ;
Peters, Wouter ;
Marani, Luciano ;
Arai, Egidio ;
Sanches, Alber H. ;
Correa, Sergio M. ;
Anderson, Liana ;
Von Randow, Celso ;
Correia, Caio S. C. ;
Crispim, Stephane P. ;
Neves, Raiane A. L. .
NATURE, 2021, 595 (7867) :388-+
[24]   The Atmospheric Mercury Network: measurement and initial examination of an ongoing atmospheric mercury record across North America [J].
Gay, D. A. ;
Schmeltz, D. ;
Prestbo, E. ;
Olson, M. ;
Sharac, T. ;
Tordon, R. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (22) :11339-11349
[25]   The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) [J].
Gelaro, Ronald ;
McCarty, Will ;
Suarez, Max J. ;
Todling, Ricardo ;
Molod, Andrea ;
Takacs, Lawrence ;
Randles, Cynthia A. ;
Darmenov, Anton ;
Bosilovich, Michael G. ;
Reichle, Rolf ;
Wargan, Krzysztof ;
Coy, Lawrence ;
Cullather, Richard ;
Draper, Clara ;
Akella, Santha ;
Buchard, Virginie ;
Conaty, Austin ;
da Silva, Arlindo M. ;
Gu, Wei ;
Kim, Gi-Kong ;
Koster, Randal ;
Lucchesi, Robert ;
Merkova, Dagmar ;
Nielsen, Jon Eric ;
Partyka, Gary ;
Pawson, Steven ;
Putman, William ;
Rienecker, Michele ;
Schubert, Siegfried D. ;
Sienkiewicz, Meta ;
Zhao, Bin .
JOURNAL OF CLIMATE, 2017, 30 (14) :5419-5454
[26]   Amazon forests capture high levels of atmospheric mercury pollution from artisanal gold mining [J].
Gerson, Jacqueline R. ;
Szponar, Natalie ;
Zambrano, Angelica Almeyda ;
Bergquist, Bridget ;
Broadbent, Eben ;
Driscoll, Charles T. ;
Erkenswick, Gideon ;
Evers, David C. ;
Fernandez, Luis E. ;
Hsu-Kim, Heileen ;
Inga, Giancarlo ;
Lansdale, Kelsey N. ;
Marchese, Melissa J. ;
Martinez, Ari ;
Moore, Caroline ;
Pan, William K. ;
Perez Purizaca, Raul ;
Sanchez, Victor ;
Silman, Miles ;
Ury, Emily A. ;
Vega, Claudia ;
Watsa, Mrinalini ;
Bernhardt, Emily S. .
NATURE COMMUNICATIONS, 2022, 13 (01)
[27]   Artificial lake expansion amplifies mercury pollution from gold mining [J].
Gerson, Jacqueline R. ;
Topp, Simon N. ;
Vega, Claudia M. ;
Gardner, John R. ;
Yang, Xiao ;
Fernandez, Luis E. ;
Bernhardt, Emily S. ;
Pavelsky, Tamlin M. .
SCIENCE ADVANCES, 2020, 6 (48)
[28]  
Gibbs H.K., 2006, OLSONS MAJOR WORLD E
[29]   Modelling the sensitivity of soil mercury storage to climate-induced changes in soil carbon pools [J].
Hararuk, O. ;
Obrist, D. ;
Luo, Y. .
BIOGEOSCIENCES, 2013, 10 (04) :2393-2407
[30]  
Hoegh-Guldberg O., 2018, GLOBAL WARMING 1 5 C, DOI DOI 10.1017/9781009157940.005