Periodic solutions to some difference equations over the integers

被引:4
作者
Greene, John [1 ]
Niedzielski, Katherine [1 ]
机构
[1] Univ Minnesota, Dept Math & Stat, Duluth, MN 55812 USA
关键词
difference equation; periodic solutions; Fibonacci identities; Lucas numbers;
D O I
10.1080/10236190802395172
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate periodic integer solutions {a(n)} to a(n) = {r(a(n-1) + a(n-2)), if r(a(n-1) + a(n-2)) is an interger, a(n-1) + a(n-2), otherwise, where r is a rational number. We show that solutions can only exist, if -1 <= r <= 1/2 and we give several infinite families of rs, for which the above recurrence has periodic solutions in the integers.
引用
收藏
页码:321 / 346
页数:26
相关论文
共 12 条