DPG Method with Optimal Test Functions for a Fractional Advection Diffusion Equation

被引:11
作者
Ervin, Vincent J. [1 ]
Fuhrer, Thomas [2 ]
Heuer, Norbert [2 ]
Karkulik, Michael [3 ]
机构
[1] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
[2] Pontificia Univ Catolica Chile, Fac Matemat, Ave Vicuna Mackenna 4860, Santiago, Chile
[3] Univ Tecn Federico Santa Maria, Dept Matemat, Ave Espana 1680, Valparaiso, Chile
关键词
Fractional diffusion; Riemann-Liouville fractional integral; DPG method with optimal test functions; Ultra-weak formulation; FINITE-ELEMENT-METHOD; PETROV-GALERKIN DISCRETIZATION; WEAK VARIATIONAL FORMULATION; BOUNDARY-VALUE PROBLEM; DIFFERENCE METHOD; APPROXIMATIONS; SPACE; NORMS; PDES;
D O I
10.1007/s10915-017-0369-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop an ultra-weak variational formulation of a fractional advection diffusion problem in one space dimension and prove its well-posedness. Based on this formulation, we define a DPG approximation with optimal test functions and show its quasi-optimal convergence. Numerical experiments confirm expected convergence properties, for uniform and adaptively refined meshes.
引用
收藏
页码:568 / 585
页数:18
相关论文
共 51 条
[1]   ERROR-BOUNDS FOR FINITE ELEMENT METHOD [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1971, 16 (04) :322-&
[2]   APPROXIMATE SYMMETRIZATION AND PETROV-GALERKIN METHODS FOR DIFFUSION-CONVECTION PROBLEMS [J].
BARRETT, JW ;
MORTON, KW .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1984, 45 (1-3) :97-122
[3]   The fractional-order governing equation of Levy motion [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1413-1423
[4]   The discontinuous Petrov-Galerkin method for elliptic problems [J].
Bottasso, CL ;
Micheletti, S ;
Sacco, R .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (31) :3391-3409
[5]  
Bramwell J, 2012, NUMER MATH, V122, P671, DOI 10.1007/s00211-012-0476-6
[6]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[7]   A Petrov-Galerkin discretization with optimal test space of a mild-weak formulation of convection-diffusion equations in mixed form [J].
Broersen, Dirk ;
Stevenson, Rob P. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (01) :39-73
[8]   A robust Petrov-Galerkin discretisation of convection-diffusion equations [J].
Broersen, Dirk ;
Stevenson, Rob .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (11) :1605-1618
[9]   Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem [J].
Cessenat, O ;
Despres, B .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (01) :255-299
[10]   A dual Petrov-Galerkin finite element method for the convection-diffusion equation [J].
Chan, Jesse ;
Evans, John A. ;
Qiu, Weifeng .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (11) :1513-1529