DPG Method with Optimal Test Functions for a Fractional Advection Diffusion Equation

被引:11
作者
Ervin, Vincent J. [1 ]
Fuhrer, Thomas [2 ]
Heuer, Norbert [2 ]
Karkulik, Michael [3 ]
机构
[1] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
[2] Pontificia Univ Catolica Chile, Fac Matemat, Ave Vicuna Mackenna 4860, Santiago, Chile
[3] Univ Tecn Federico Santa Maria, Dept Matemat, Ave Espana 1680, Valparaiso, Chile
关键词
Fractional diffusion; Riemann-Liouville fractional integral; DPG method with optimal test functions; Ultra-weak formulation; FINITE-ELEMENT-METHOD; PETROV-GALERKIN DISCRETIZATION; WEAK VARIATIONAL FORMULATION; BOUNDARY-VALUE PROBLEM; DIFFERENCE METHOD; APPROXIMATIONS; SPACE; NORMS; PDES;
D O I
10.1007/s10915-017-0369-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop an ultra-weak variational formulation of a fractional advection diffusion problem in one space dimension and prove its well-posedness. Based on this formulation, we define a DPG approximation with optimal test functions and show its quasi-optimal convergence. Numerical experiments confirm expected convergence properties, for uniform and adaptively refined meshes.
引用
收藏
页码:568 / 585
页数:18
相关论文
共 51 条