Targeted Surface Doping with Reversible Local Environment Improves Oxygen Stability at the Electrochemical Interfaces of Nickel-Rich Cathode Materials

被引:39
作者
Steiner, James D. [1 ]
Cheng, Hao [2 ,3 ,4 ]
Walsh, Julia [1 ]
Zhang, Yan [5 ]
Zydlewski, Benjamin [1 ]
Mu, Linqin [1 ]
Xu, Zhengrui [1 ]
Rahman, Muhammad Mominur [1 ]
Sun, Huabin [6 ]
Michel, F. Marc [7 ]
Sun, Cheng-Jun [8 ]
Nordlund, Dennis [5 ]
Luo, Wei [6 ]
Zheng, Jin-Cheng [2 ,3 ,4 ]
Xin, Huolin L. [9 ]
Lin, Feng [1 ]
机构
[1] Virginia Tech, Dept Chem, Blacksburg, VA 24061 USA
[2] Xiamen Univ, Dept Phys, Xiamen 361005, Fujian, Peoples R China
[3] Xiamen Univ, Collaborat Innovat Ctr Optoelect Semicond & Effic, Xiamen 361005, Fujian, Peoples R China
[4] Xiamen Univ Malaysia, Sepang 439000, Selangor, Malaysia
[5] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA
[6] Tongji Univ, Sch Mat Sci & Engn, Inst New Energy Vehicles, Shanghai 201804, Peoples R China
[7] Virginia Tech, Dept Geosci, Blacksburg, VA 24061 USA
[8] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
[9] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
关键词
battery; cathode; surface doping; oxygen activity; surface chemistry; ATOMIC LAYER DEPOSITION; STRUCTURAL DEGRADATION; THERMAL-STABILITY; RATE PERFORMANCE; CYCLE STABILITY; ION; LINI0.4MN0.4CO0.2O2; LINIXMNYCOZO2; CHEMISTRY; BATTERIES;
D O I
10.1021/acsami.9b14729
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Elemental doping represents a prominent strategy to improve interfacial chemistry in battery materials. Manipulating the dopant spatial distribution and understanding the dynamic evolution of the dopants at the atomic scale can inform better design of the doping chemistry for batteries. In this work, we create a targeted hierarchical distribution of Ti4+, a popular doping element for oxide cathode materials, in LiNi0.8Mn0.1Co0.1O2 primary particles. We apply multiscale synchrotron/electron spectroscopy and imaging techniques as well as theoretical calculations to investigate the dynamic evolution of the doping chemical environment. The Ti4+ dopant is hilly incorporated into the TMO6 octahedral coordination and is targeted to be enriched at the surface. Ti4+ in the TMO6 octahedral coordination increases the TM-O bond length and reduces the covalency between (Ni, Mn, Co) and O. The excellent reversibility of chemical environment gives rise to superior oxygen reversibility at the cathode electrolyte interphase and in the bulk particles, leading to improved stability in capacity, energy, and voltage. Our work directly probes the chemical environment of doping elements and helps rationalize the doping strategy for high-voltage layered cathodes.
引用
收藏
页码:37885 / 37891
页数:7
相关论文
共 40 条
[1]  
Bunau O., 2009, J. of Phys: Cond. Mat, V21, P34
[2]   Origin of Structural Degradation During Cycling and Low Thermal Stability of Ni-Rich Layered Transition Metal-Based Electrode Materials [J].
Dixit, Mudit ;
Markovsky, Boris ;
Schipper, Florian ;
Aurbach, Doron ;
Major, Dan T. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (41) :22628-22636
[3]   Direct Observation of Lattice Aluminum Environments in Li Ion Cathodes LiNi1-y-zCoyAlzO2 and Al-Doped LiNixMnyCozO2 via 27Al MAS NMR Spectroscopy [J].
Dogan, Fulya ;
Vaughey, John T. ;
Iddir, Hakim ;
Key, Baris .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (26) :16708-16717
[4]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[5]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603
[6]   The reactivity of charged positive Li1-n[NixMnyCoz]O2 electrodes with electrolyte at elevated temperatures using accelerating rate calorimetry [J].
Huang, Que ;
Ma, Lin ;
Liu, Aaron ;
Ma, Xiaowei ;
Li, Jing ;
Wang, Jian ;
Dahn, J. R. .
JOURNAL OF POWER SOURCES, 2018, 390 :78-86
[7]   Oxygen Release and Its Effect on the Cycling Stability of LiNixMnyCozO2 (NMC) Cathode Materials for Li-Ion Batteries [J].
Jung, Roland ;
Metzger, Michael ;
Maglia, Filippo ;
Stinner, Christoph ;
Gasteiger, Hubert A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (07) :A1361-A1377
[8]   Understanding the Degradation Mechanisms of LiNi0.5Co0.2Mn0.3O2 Cathode Material in Lithium Ion Batteries [J].
Jung, Sung-Kyun ;
Gwon, Hyeokjo ;
Hong, Jihyun ;
Park, Kyu-Young ;
Seo, Dong-Hwa ;
Kim, Haegyeom ;
Hyun, Jangsuk ;
Yang, Wooyoung ;
Kang, Kisuk .
ADVANCED ENERGY MATERIALS, 2014, 4 (01)
[9]   Atomic Layer Deposition of Al2O3-Ga2O3 Alloy Coatings for Li[Ni0.5Mn0.3Co0.2]O2 Cathode to Improve Rate Performance in Li-Ion Battery [J].
Laskar, Masihhur R. ;
Jackson, David H. K. ;
Guan, Yingxin ;
Xu, Shenzhen ;
Fang, Shuyu ;
Dreibelbis, Mark ;
Mahanthappa, Mahesh K. ;
Morgan, Dane ;
Hamers, Robert J. ;
Kuech, Thomas F. .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (16) :10572-10580
[10]   Study of the Failure Mechanisms of LiNi0.8Mn0.1Co0.1O2 Cathode Material for Lithium Ion Batteries [J].
Li, Jing ;
Downie, Laura E. ;
Ma, Lin ;
Qiu, Wenda ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (07) :A1401-A1408