The instability of a vortex ring impinging on a free surface

被引:24
作者
Archer, P. J. [1 ]
Thomas, T. G. [1 ]
Coleman, G. N. [1 ]
机构
[1] Univ Southampton, Sch Engn Sci, Aerodynam & Flight Mech Res Grp, Southampton SO17 1BJ, Hants, England
基金
英国工程与自然科学研究理事会;
关键词
dynamics; instability; interactions; DIRECT NUMERICAL SIMULATIONS; HEAD-ON COLLISION; ELLIPTIC INSTABILITY; STRAIN FIELD; SHORT WAVES; STABILITY; RECONNECTION; VORTICITY; DYNAMICS; PAIR;
D O I
10.1017/S0022112009991753
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Direct numerical simulation is used to study the development of a single laminar vortex ring as it impinges on a free Surface directly from below. We consider the limiting case in which the Froude number approaches zero and the surface call be modelled with a stress-free rigid and impermeable boundary. We find that as the ring expands in the radial direction close to the surface, the natural Tsal-Widnall-Moore-Saffman (TWMS) instability is superseded by the development of the Crow instability. The Crow instability is able to further amplify the residual perturbations left by the TWMS instability despite being of differing radial structure and alignment. This occurs through realignment of the instability Structure and shedding of a portion of its outer vorticity profile. As a result, the dominant wavenumber of the Crow instability reflects that of the TWMS instability, and is dependent upon the initial slenderness ratio of the ring. At higher Reynolds number a short-wavelength instability develops on the long-wavelength Crow instability. The wavelength of the short waves IS found to vary around the ring dependent oil the local displacement of the long waves.
引用
收藏
页码:79 / 94
页数:16
相关论文
共 27 条
[1]   Direct numerical simulation of vortex ring evolution from the laminar to the early turbulent regime [J].
Archer, P. J. ;
Thomas, T. G. ;
Coleman, G. N. .
JOURNAL OF FLUID MECHANICS, 2008, 598 (201-226) :201-226
[2]  
Crow S. C., 1970, AIAA J, V8, P2172, DOI [10.2514/3.6083, DOI 10.2514/3.6083]
[3]   Three-dimensional instability of Burgers and Lamb-Oseen vortices in a strain field [J].
Eloy, C ;
Le Dizès, S .
JOURNAL OF FLUID MECHANICS, 1999, 378 :145-166
[4]   Direct numerical simulations of the Crow instability and subsequent vortex reconnection in a stratified fluid [J].
Garten, JF ;
Werne, J ;
Fritts, DC ;
Arendt, S .
JOURNAL OF FLUID MECHANICS, 2001, 426 :1-45
[5]  
Kelvin L., 1880, Phil Mag, V10, P155
[6]   Elliptical instability [J].
Kerswell, RR .
ANNUAL REVIEW OF FLUID MECHANICS, 2002, 34 :83-113
[7]  
Krutzsch CH, 1939, ANN PHYS-BERLIN, V35, P497
[8]  
Lamb H., 1945, Hydrodynamics
[9]   Direct numerical simulations of the elliptic instability of a vortex pair [J].
Laporte, F ;
Corjon, A .
PHYSICS OF FLUIDS, 2000, 12 (05) :1016-1031
[10]   Cooperative elliptic instability of a vortex pair [J].
Leweke, T ;
Williamson, CHK .
JOURNAL OF FLUID MECHANICS, 1998, 360 :85-119