CMB power spectrum estimation using noncircular beams

被引:23
|
作者
Mitra, S [1 ]
Sengupta, AS [1 ]
Souradeep, T [1 ]
机构
[1] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India
来源
PHYSICAL REVIEW D | 2004年 / 70卷 / 10期
关键词
D O I
10.1103/PhysRevD.70.103002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The measurements of the angular power spectrum of the Cosmic Microwave Background (CMB) anisotropy have proved crucial to the emergence of cosmology as a precision science in recent years. In this remarkable data rich period, the limitations to precision now arise from the inability to account for finer systematic effects in data analysis. The noncircularity of the experimental beam has become progressively important as CMB experiments strive to attain higher angular resolution and sensitivity. We present an analytic framework for studying the leading order effects of a noncircular beam on the CMB power spectrum estimation. We consider a noncircular beam of fixed shape but variable orientation. We compute the bias in the pseudo-C-l power spectrum estimator and then construct an unbiased estimator using the bias matrix. The covariance matrix of the unbiased estimator is computed for smooth, noncircular beams. Quantitative results are shown for CMB maps made by a hypothetical experiment with a noncircular beam comparable to our fits to the Wilkinson Microwave Anisotropy Probe (WMAP) beam maps described in the appendix and uses a toy scan strategy. We find that significant effects on CMB power spectrum can arise due to noncircular beam on multipoles comparable to, and beyond, the inverse average beamwidth where the pseudo-C-l approach may be the method of choice due to computational limitations of analyzing the large data sets from current and near future CMB experiments.
引用
收藏
页码:103002 / 1
页数:18
相关论文
共 50 条
  • [1] CMB power spectrum estimation using wavelets
    Fay, G.
    Guilloux, F.
    Betoule, M.
    Cardoso, J. -F.
    Delabrouille, J.
    Le Jeune, M.
    PHYSICAL REVIEW D, 2008, 78 (08):
  • [2] CMB power spectrum estimation for the Planck Surveyor
    Balbi, A
    de Gasperis, G
    Natoli, P
    Vittorio, N
    ASTRONOMY & ASTROPHYSICS, 2002, 395 (02) : 417 - 421
  • [3] CMB broad-band power spectrum estimation
    Bond, JR
    ASTROPHYSICAL LETTERS & COMMUNICATIONS, 1995, 32 (1-6) : 63 - 74
  • [4] CMB map-making and power spectrum estimation
    Hamilton, JC
    COMPTES RENDUS PHYSIQUE, 2003, 4 (08) : 871 - 879
  • [5] Polarized CMB power spectrum estimation using the pure pseudo-cross-spectrum approach
    Grain, J.
    Tristram, M.
    Stompor, R.
    PHYSICAL REVIEW D, 2009, 79 (12):
  • [6] Joint resonant CMB power spectrum and bispectrum estimation
    Meerburg, P. Daniel
    Muenchmeyer, Moritz
    Wandelt, Benjamin
    PHYSICAL REVIEW D, 2016, 93 (04)
  • [7] Fast optimal CMB power spectrum estimation with Hamiltonian sampling
    Taylor, J. F.
    Ashdown, M. A. J.
    Hobson, M. P.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2008, 389 (03) : 1284 - 1292
  • [8] Gabor transforms on the sphere with applications to CMB power spectrum estimation
    Hansen, FK
    Górski, KM
    Hivon, E
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2002, 336 (04) : 1304 - 1328
  • [9] Efficient power spectrum estimation for high resolution CMB maps
    Das, Sudeep
    Hajian, Amir
    Spergel, David N.
    PHYSICAL REVIEW D, 2009, 79 (08):
  • [10] Joint Bayesian component separation and CMB power spectrum estimation
    Eriksen, H. K.
    Jewell, J. B.
    Dickinson, C.
    Banday, A. J.
    Gorski, K. M.
    Lawrence, C. R.
    ASTROPHYSICAL JOURNAL, 2008, 676 (01): : 10 - 32