Large-Scale Magnetic Microcalorimeter Arrays for the Lynx X-Ray Microcalorimeter

被引:1
作者
Devasia, Archana M. [1 ,2 ,3 ]
Bandler, Simon R. [1 ,2 ,3 ]
Ryu, Kevin [1 ,2 ,3 ]
Stevenson, Thomas R. [1 ,2 ,3 ]
Yoon, Wonsik [1 ,2 ,3 ]
机构
[1] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[2] MIT, Lincoln Lab, Lexington, MA 02420 USA
[3] Sci Syst & Applicat Inc, Lanham, MD 20706 USA
关键词
Microcalorimeter; Superconducting wiring; Arrays; Hydra;
D O I
10.1007/s10909-022-02767-z
中图分类号
O59 [应用物理学];
学科分类号
摘要
The Lynx X-ray microcalorimeter (LXM) is an imaging spectrometer consisting of an array of greater than 100,000 pixels. Magnetic microcalorimeter (MMC) technology is a leading contender for detectors for the LXM. In this work, we detail the design of a full-size LXM MMC array fabricated using superconducting, multi-layer, buried wiring, with all pixels wired out on a full-size support wafer. We adopt a scheme that facilitates mixing and matching deep UV (DUV) and i-line (365 nm) steppers to stitch the high feature resolution detector array to the large field fanout wiring. To realize the main array of the microcalorimeter, we also employ a sandwich geometry. In this type of pixel, a superconducting ground plane placed above a paramagnetic sensor forces most of the magnetic flux to remain inside the sensor. This device aims to improve the coupling of the sensor to the pick-up coil, and thus enhance the energy resolution. Additionally, we introduce the integration of superconducting flux transformers to optimize the performance of the Ultra High Resolution Array. The wiring to each pixel terminates on bump bond pads, which allow future 2D microwave SQUID-based multiplexer chips to be indium bump bonded over the buried wiring. We present fabrication results and preliminary room temperature electrical measurements.
引用
收藏
页码:337 / 345
页数:9
相关论文
共 13 条
[1]  
Bandler SR, 2019, J ASTRON TELESC INST, V5, DOI 10.1117/1.JATIS.5.2.021017
[2]  
Brown A., U.S. Patent, Patent No. [9,076,658B1, 9076658]
[3]   Fabrication of Magnetic Calorimeter Arrays With Buried Wiring [J].
Devasia, Archana M. ;
Balvin, Manuel A. ;
Bandler, Simon R. ;
Bolkhovsky, Vladimir ;
Nagler, Peter C. ;
Ryu, Kevin ;
Smith, Stephen James ;
Stevenson, Thomas R. ;
Yoon, Wonsik .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2019, 29 (05)
[4]  
Fleischmann A, 2005, TOP APPL PHYS, V99, P151
[5]   maXs: Microcalorimeter Arrays for High-Resolution X-Ray Spectroscopy at GSI/FAIR [J].
Pies, C. ;
Schaefer, S. ;
Heuser, S. ;
Kempf, S. ;
Pabinger, A. ;
Porst, J. -P. ;
Ranitsch, P. ;
Foerster, N. ;
Hengstler, D. ;
Kampkoetter, A. ;
Wolf, T. ;
Gastaldo, L. ;
Fleischmann, A. ;
Enss, C. .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2012, 167 (3-4) :269-279
[6]   Characterization and Performance of Magnetic Calorimeters for Applications in X-ray Spectroscopy [J].
Porst, J. -P. ;
Bandler, S. R. ;
Adams, J. S. ;
Balvin, M. A. ;
Busch, S. E. ;
Eckart, M. E. ;
Kelley, R. L. ;
Kilbourne, C. A. ;
Lee, S. J. ;
Nagler, P. C. ;
Porter, F. S. ;
Sadleir, J. E. ;
Seidel, G. M. ;
Smith, S. J. ;
Stevenson, T. R. .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2014, 176 (5-6) :617-623
[7]   Development of Position-Sensitive Transition-Edge Sensor X-Ray Detectors [J].
Smith, Stephen James ;
Bandler, Simon R. ;
Brekosky, Regis P. ;
Brown, Ari-David ;
Chervenak, Jay A. ;
Eckart, Megan E. ;
Figueroa-Feliciano, Encetali ;
Finkbeiner, Fred M. ;
Kelley, Richard L. ;
Kilbourne, Caroline A. ;
Porter, Frederick Scott ;
Sadleir, John E. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2009, 19 (03) :451-455
[8]   Magnetic Calorimeter Arrays with High Sensor Inductance and Dense Wiring [J].
Stevenson, T. R. ;
Balvin, M. A. ;
Bandler, S. R. ;
Devasia, A. M. ;
Nagler, P. C. ;
Smith, S. J. ;
Yoon, W. .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2018, 193 (5-6) :668-674
[9]  
Stevenson T.R., OPTIMIZATION T UNPUB
[10]  
Tolpygo S. K, 2015, IEEE Trans. Appl. Supercond, V25, DOI DOI 10.1109/TASC.2014.2369213