MULTIPLICITY OF SOLUTIONS FOR A CLASS OF NON-LOCAL ELLIPTIC OPERATORS SYSTEMS

被引:11
作者
Bai, Chuanzhi [1 ]
机构
[1] Huaiyin Normal Univ, Dept Math, Huaiyin 223300, Jiangsu, Peoples R China
关键词
integrodifferential operators; saddle point theorem; Ekeland's variational principle; Mountain pass theorem; FRACTIONAL LAPLACIAN;
D O I
10.4134/BKMS.b150489
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the existence and multiplicity of solutions for systems driven by two non-local integrodifferential operators with homogeneous Dirichlet boundary conditions. The main tools are the Saddle point theorem, Ekeland's variational principle and the Mountain pass theorem.
引用
收藏
页码:715 / 729
页数:15
相关论文
共 15 条
[1]   Existence of multiple solutions for a class of (p, q)-Laplacian systems [J].
Afrouzi, G. A. ;
Mahdavi, S. ;
Naghizadeh, Z. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (05) :2243-2250
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]   Existence results for non-local operators of elliptic type [J].
Bai, Chuanzhi .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 83 :82-90
[4]   On some critical problems for the fractional Laplacian operator [J].
Barrios, B. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (11) :6133-6162
[5]   Superlinear nonlocal fractional problems with infinitely many solutions [J].
Binlin, Zhang ;
Bisci, Giovanni Molica ;
Servadei, Raffaella .
NONLINEARITY, 2015, 28 (07) :2247-2264
[6]   Fractional equations with bounded primitive [J].
Bisci, Giovanni Molica .
APPLIED MATHEMATICS LETTERS, 2014, 27 :53-58
[7]   Boundary Potential Theory for Schrodinger Operators Based on Fractional Laplacian [J].
Bogdan, K. ;
Byczkowski, T. .
POTENTIAL ANALYSIS OF STABLE PROCESSES AND ITS EXTENSIONS, 2009, 1980 :25-55
[8]   Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian [J].
Caffarelli, Luis A. ;
Salsa, Sandro ;
Silvestre, Luis .
INVENTIONES MATHEMATICAE, 2008, 171 (02) :425-461
[9]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[10]   A geometric inequality and a symmetry result for elliptic systems involving the fractional Laplacian [J].
Dipierro, Serena ;
Pinamonti, Andrea .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (01) :85-119