Noncommutative geometry and gauge theory on fuzzy sphere

被引:128
作者
Carow-Watamura, U [1 ]
Watamura, S [1 ]
机构
[1] Tohoku Univ, Grad Sch Sci, Dept Phys, Aoba Ku, Sendai, Miyagi 9808577, Japan
关键词
D O I
10.1007/s002200000213
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The differential algebra on the fuzzy sphere is constructed by applying Connes' scheme. The U(1) gauge theory on the fuzzy sphere based on this differential algebra is defined. The local U(1) gauge transformation on the fuzzy sphere is identified with the left U(N + 1) transformation of the field, where a field is a bimodule over the quantized algebra AN. The interaction with a complex scalar field is also given.
引用
收藏
页码:395 / 413
页数:19
相关论文
共 31 条
[1]   Strings from matrices [J].
Banks, T ;
Seiberg, N .
NUCLEAR PHYSICS B, 1997, 497 (1-2) :41-55
[3]  
Berezin F. A., 1974, MATH USSR IZV, V8, P1109, DOI 10.1070/IM1974v008n05ABEH002140
[4]   GENERAL CONCEPT OF QUANTIZATION [J].
BEREZIN, FA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 40 (02) :153-174
[5]   GL(INFINITY) AND GEOMETRIC-QUANTIZATION [J].
BORDEMANN, M ;
HOPPE, J ;
SCHALLER, P ;
SCHLICHENMAIER, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 138 (02) :209-244
[6]   TOEPLITZ QUANTIZATION OF KAHLER-MANIFOLDS AND GL(N), N-]INFINITY LIMITS [J].
BORDEMANN, M ;
MEINRENKEN, E ;
SCHLICHENMAIER, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (02) :281-296
[7]   QUANTIZATION OF KAHLER-MANIFOLDS .2. [J].
CAHEN, M ;
GUTT, S ;
RAWNSLEY, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 337 (01) :73-98
[8]   Differential calculus on fuzzy sphere and scalar field [J].
Carow-Watamura, U ;
Watamura, S .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1998, 13 (19) :3235-3243
[9]  
CHAMSEDDINE AH, ETHTH9324
[10]   DEFORMATION ESTIMATES FOR THE BEREZIN-TOEPLITZ QUANTIZATION [J].
COBURN, LA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 149 (02) :415-424