Axisymmetric solutions of the Navier-Stokes equations

被引:1
作者
Gallagher, I [1 ]
Ibrahim, S
Majdoub, M
机构
[1] Univ Paris Sud, Dept Math, F-91405 Orsay, France
[2] Fac Sci Bizerte, Dept Math, Bizerte 7021, Tunisia
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 2000年 / 330卷 / 09期
关键词
D O I
10.1016/S0764-4442(00)00262-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the tridimensional Navier-Stokes equations, written in a domain which is invariant under rotation around the vertical axis, or in the whole space R-3; the solutions seeked are also invariant by that rotation, and we look for conditions on the initial data which are close to the natural assumptions in the case of two space dimensions. (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:791 / 794
页数:4
相关论文
共 13 条
[1]  
ACHTAICH N, 1985, C R ACAD SCI PARIS 1, V303
[2]  
[Anonymous], HARMONIC ANAL
[3]  
Cannone M., 1995, ONDELETTES PARAPRODU
[4]  
CONSTANTIN P, 1988, NAVIERSTOKES EQUATIO
[5]   ON THE NAVIER-STOKES INITIAL VALUE PROBLEM .1. [J].
FUJITA, H ;
KATO, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1964, 16 (04) :269-315
[6]  
GALLAGHER I, 1999, IN PRESS COMMUN PART
[7]  
GALLAGHER I, 1997, INT MATH RES NOTICES, V18, P919
[8]  
Journe J.-L., 1983, LECT NOTES MATH, V994
[9]   On the movement of a viscous fluid to fill the space [J].
Leray, J .
ACTA MATHEMATICA, 1934, 63 (01) :193-248
[10]  
Lions J. L., 1969, QUELQUES METHODES RE