Local Derivative Pattern Versus Local Binary Pattern: Face Recognition With High-Order Local Pattern Descriptor

被引:742
作者
Zhang, Baochang [1 ]
Gao, Yongsheng [2 ]
Zhao, Sanqiang [2 ]
Liu, Jianzhuang [3 ]
机构
[1] Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
[2] Griffith Univ, Griffith Sch Engn, Brisbane, Qld 4111, Australia
[3] Chinese Univ Hong Kong, Dept Informat Engn, Hong Kong, Hong Kong, Peoples R China
基金
澳大利亚研究理事会;
关键词
Face recognition; Gabor feature; high-order local pattern; local binary pattern (LBP); local derivative pattern (LDP); INVARIANT TEXTURE CLASSIFICATION; ILLUMINATION; SCALE;
D O I
10.1109/TIP.2009.2035882
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a novel high-order local pattern descriptor, local derivative pattern (LDP), for face recognition. LDP is a general framework to encode directional pattern features based on local derivative variations. The n(th)-order LDP is proposed to encode the (n - 1)(th)-order local derivative direction variations, which can capture more detailed information than the first-order local pattern used in local binary pattern (LBP). Different from LBP encoding the relationship between the central point and its neighbors, the LDP templates extract high-order local information by encoding various distinctive spatial relationships contained in a given local region. Both gray-level images and Gabor feature images are used to evaluate the comparative performances of LDP and LBP. Extensive experimental results on FERET, CAS-PEAL, CMU-PIE, Extended Yale B, and FRGC databases show that the high-order LDP consistently performs much better than LBP for both face identification and face verification under various conditions.
引用
收藏
页码:533 / 544
页数:12
相关论文
共 32 条
[1]   Face description with local binary patterns:: Application to face recognition [J].
Ahonen, Timo ;
Hadid, Abdenour ;
Pietikainen, Matti .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (12) :2037-2041
[2]  
[Anonymous], 1997, HUMAN FACE RECOGNITI
[3]  
[Anonymous], P IEEE C COMP VIS PA
[4]   Face recognition by independent component analysis [J].
Bartlett, MS ;
Movellan, JR ;
Sejnowski, TJ .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2002, 13 (06) :1450-1464
[5]   Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection [J].
Belhumeur, PN ;
Hespanha, JP ;
Kriegman, DJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (07) :711-720
[6]   HUMAN AND MACHINE RECOGNITION OF FACES - A SURVEY [J].
CHELLAPPA, R ;
WILSON, CL ;
SIROHEY, S .
PROCEEDINGS OF THE IEEE, 1995, 83 (05) :705-740
[7]   HIGH CONFIDENCE VISUAL RECOGNITION OF PERSONS BY A TEST OF STATISTICAL INDEPENDENCE [J].
DAUGMAN, JG .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1993, 15 (11) :1148-1161
[8]  
Gabor D., 1946, Commun. Eng, V93, P429, DOI [DOI 10.1049/JI-3-2.1946.0074, 10.1049/ji-3-2.1946.0074, 10.1049/JI-3-2.1946.0074]
[9]   The CAS-PEAL large-scale Chinese face database and baseline evaluations [J].
Gao, Wen ;
Cao, Bo ;
Shan, Shiguang ;
Chen, Xilin ;
Zhou, Delong ;
Zhang, Xiaohua ;
Zhao, Debin .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2008, 38 (01) :149-161
[10]   Face recognition using line edge map [J].
Gao, YS ;
Leung, MKH .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (06) :764-779