Basu-Dhar bivariate geometric distribution in the presence of covariates and censored data: a Bayesian approach

被引:6
作者
Achcar, J. A. [1 ]
Davarzani, N. [2 ]
Souza, R. M. [3 ]
机构
[1] Univ Sao Paulo, Fac Med Ribeirao Preto, Dept Social Med, Ribeirao Preto, SP, Brazil
[2] Maastricht Univ, Dept Knowledge Engn, NL-6200 MD Maastricht, Netherlands
[3] Fed Technol Univ Parana, Dept Math, Cornelio Procopio, Parana, Brazil
关键词
Discrete bivariate lifetime data; Basu-Dhar geometric distribution; censored data; covariates; EXPONENTIAL-DISTRIBUTION; RELIABILITY; REGRESSION; EXTENSION; INFERENCE; BLOCK;
D O I
10.1080/02664763.2015.1117589
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we introduce classical and Bayesian approaches for the Basu-Dhar bivariate geometric distribution in the presence of covariates and censored data. This distribution is considered for the analysis of bivariate lifetime as an alternative to some existing bivariate lifetime distributions assuming continuous lifetimes as the Block and Basu or Marshall and Olkin bivariate distributions. Maximum likelihood and Bayesian estimators are presented. Two examples are considered to illustrate the proposed methodology: an example with simulated data and an example with medical bivariate lifetime data.
引用
收藏
页码:1636 / 1648
页数:13
相关论文
共 50 条
[21]   Bayesian approach to analysing longitudinal bivariate binary data with informative dropout [J].
Chan, Jennifer S. K. ;
Wan, Wai Y. .
COMPUTATIONAL STATISTICS, 2011, 26 (01) :121-144
[22]   Different methods of estimation in two parameter Geometric distribution with randomly censored data [J].
Goel, Neha ;
Krishna, Hare .
INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2022, 13 (04) :1652-1665
[23]   Statistical inference of Marshall-Olkin bivariate Weibull distribution with three shocks based on progressive interval censored data [J].
Bai, Xuchao ;
Shi, Yimin ;
Liu, Bin ;
Fu, Qianrao .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2019, 48 (03) :637-654
[24]   The inverse power Lindley distribution in the presence of left-censored data [J].
Coelho-Barros, Emilio A. ;
Mazucheli, Josmar ;
Achcar, Jorge A. ;
Parede Barco, Kelly Vanessa ;
Tovar Cuevas, Jose Rafael .
JOURNAL OF APPLIED STATISTICS, 2018, 45 (11) :2081-2094
[25]   A simulation study of parameters for the censored shifted Gompertz mixture distribution: A Bayesian approach [J].
Sindhu, Tabassum Naz ;
Aslam, Muhammad ;
Hussain, Zawar .
JOURNAL OF STATISTICS & MANAGEMENT SYSTEMS, 2016, 19 (03) :423-450
[26]   Analyzing competing risks data using bivariate Weibull-geometric distribution [J].
Kundu, Debasis ;
Mondal, Shuvashree .
STATISTICS, 2021, 55 (02) :276-295
[27]   Bayesian Estimations of Mixed Exponential Distribution with Type-I Censored Data [J].
Wei, Chengdong ;
Wei, Huanqi ;
Wang, Fu ;
Wu, Wenjun .
MATERIALS PROCESSING AND MANUFACTURING III, PTS 1-4, 2013, 753-755 :2887-2891
[28]   Reliability of a soccer player based on the bivariate Rayleigh distribution with right censored and ignorable missing data [J].
Bahari, Fayyaz ;
Parsi, Safar ;
Ganjali, Mojtaba .
JOURNAL OF APPLIED STATISTICS, 2021, 48 (02) :285-300
[29]   Inference for the trivariate Marshall-Olkin-Weibull distribution in presence of right-censored data [J].
de Oliveira, Ricardo Puziol ;
de Oliveira Peres, Marcos Vinicius ;
Achcar, Jorge Alberto ;
Davarzani, Nasser .
CHILEAN JOURNAL OF STATISTICS, 2020, 11 (02) :95-116
[30]   Some Bayesian estimators of the reliability inverse Weibull distribution using Doubly Type II Censored data [J].
Al-Dubaicy, Awatif Rezzoky .
INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2023, 18 (02) :313-320