Galois module structure of holomorphic differentials

被引:3
作者
Rzedowski-Calderón, M
Villa-Salvador, G
Madan, ML
机构
[1] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Matemat, Mexico City 07000, DF, Mexico
[2] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
D O I
10.1017/S0004972700019018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a finite cyclic p extension L/K of a rational function field K = k(x) over an algebraically closed field k of characteristic p > 0 such that every ramified prime divisor is fully ramified, we find a basis of the k[G]-module Omega (L)(0) of holomorphic differentials of L. We use this basis, which is similar to the Boseck-Garcia basis in the elementary abelian case, to find the k[G]-module structure of Omega (L)(0) in terms of indecomposable modules.
引用
收藏
页码:493 / 509
页数:17
相关论文
共 9 条
[1]  
BOSECK H., 1958, MATH NACHR, V19, P29
[2]  
Chevalley C., 1934, ABH MATH SEM HAMBURG, V10, P358, DOI [10.1007/bf02940687, DOI 10.1007/BF02940687]
[3]   ELEMENTARY ABELIAN P-EXTENSIONS OF ALGEBRAIC FUNCTION-FIELDS [J].
GARCIA, A ;
STICHTENOTH, H .
MANUSCRIPTA MATHEMATICA, 1991, 72 (01) :67-79
[4]   ARITHMETIC IN GENERALIZED ARTIN-SCHREIER EXTENSIONS OF K(X) [J].
MADDEN, DJ .
JOURNAL OF NUMBER THEORY, 1978, 10 (03) :303-323
[5]   Galois module structure of holomorphic differentials in characteristic p [J].
RzedowskiCalderon, M ;
VillaSalvador, G ;
Madan, ML .
ARCHIV DER MATHEMATIK, 1996, 66 (02) :150-156
[6]  
Schmid Hermann Ludwig, 1936, J REINE ANGEW MATH, V176, P161
[7]  
Serre J. -P, 1979, GRADUATE TEXTS MATH, V67
[8]   AUTOMORPHISMS AND HOLOMORPHIC DIFFERENTIALS IN CHARACTERISTIC-P [J].
VALENTINI, RC ;
MADAN, ML .
JOURNAL OF NUMBER THEORY, 1981, 13 (01) :106-115
[9]  
Witt E., 1937, J REINE ANGEW MATH, V176, P126