Soliton solutions of two bidirectional sixth-order partial differential equations belonging to the KP hierarchy

被引:11
作者
Verhoeven, C [1 ]
Musette, M [1 ]
机构
[1] Free Univ Brussels, Dienst Theoret Nat Kunde, B-1050 Brussels, Belgium
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2003年 / 36卷 / 08期
关键词
D O I
10.1088/0305-4470/36/8/103
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this letter, we analyse two bidirectional sixth-order partial differential equations, which are reductions in (1 + 1) dimensions of equations belonging to the KP hierarchy. They have fourth-order and fifth-order Lax pairs, respectively. We derive their Backlund transformations and, from the nonlinear superposition formula, we can build their soliton solutions like a Grammian. The interesting dynamics of these solitons is that they may describe not only the overtaking collision but also the head-on collision of solitary waves of different type and shape.
引用
收藏
页码:L133 / L143
页数:11
相关论文
共 14 条
[1]  
BAKER S, 1995, THESIS U LEEDS
[2]   BREAKING SOLITONS IN 2 + 1-DIMENSIONAL INTEGRABLE EQUATIONS [J].
BOGOYAVLENSKII, OI .
RUSSIAN MATHEMATICAL SURVEYS, 1990, 45 (04) :1-86
[3]   Higher-order Painleve equations in the polynomial class I.: Bureau symbol P2 [J].
Cosgrove, CM .
STUDIES IN APPLIED MATHEMATICS, 2000, 104 (01) :1-65
[4]  
Drinfeld V G, 1981, SOV MATH DOKL, V23, P457
[5]  
Drinfeld V.G., 1985, J SOVIET MATH, V30, P1975, DOI [DOI 10.1007/BF02105860, 10.1007/BF02105860]
[6]   On bidirectional fifth-order nonlinear evolution equations, Lax pairs, and directionally dependent solitary waves [J].
Dye, JM ;
Parker, A .
JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (06) :2567-2589
[7]   Soliton solutions and symmetries of the 2+1 dimensional Kaup-Kupershmidt equation [J].
Hu, XB ;
Wang, DL ;
Qian, XM .
PHYSICS LETTERS A, 1999, 262 (06) :409-415
[8]   SOLITONS AND INFINITE DIMENSIONAL LIE-ALGEBRAS [J].
JIMBO, M ;
MIWA, T .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1983, 19 (03) :943-1001
[9]  
KAUP DJ, 1980, STUD APPL MATH, V62, P189
[10]   On reduced CKP equations [J].
Loris, I .
INVERSE PROBLEMS, 1999, 15 (04) :1099-1109