Ideas from continued fraction theory extended to Pade approximation and generalized iteration

被引:2
作者
Lorentzen, L [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, Norway
关键词
continued fraction; Pade approximation; convergence; general convergence; convergence acceleration; generalized iteration; self-mappings;
D O I
10.1023/A:1006414501573
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This is a survey of some basic ideas in the convergence theory for continued fractions, in particular value sets, general convergence and the use of modified approximants to obtain convergence acceleration and analytic continuation. The purpose is to show how these ideas apply to some other areas of mathematics. In particular, we introduce {w(k)}-modifications and general convergence for sequences of Pade approximants.
引用
收藏
页码:185 / 206
页数:22
相关论文
共 20 条
[11]  
Lorentzen L., 1995, Numerical Algorithms, V10, P69, DOI 10.1007/BF02198297
[12]  
LORENTZEN L, 1992, STUDIES COMPUT MATH, V3
[13]  
LORENTZEN L, 1999, ANN U M CURIE SKLO A, V53, P121
[14]  
Perron O, 1957, LEHRE KETTENBRUCHEN
[15]   A convergence theorem for continued fractions [J].
Scott, W. T. ;
Wall, H. S. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1940, 47 (1-3) :155-172
[16]  
SCOTT WT, 1941, B AM MATH SOC, V47, P580
[17]  
SYLVESTER JJ, 1869, PHILOS MAGAZINE LOND, V84, P373
[18]   ACCELERATING CONVERGENCE OF LIMIT PERIODIC CONTINUED FRACTIONS K(AN/1) [J].
THRON, WJ ;
WAADELAND, H .
NUMERISCHE MATHEMATIK, 1980, 34 (02) :155-170
[19]   CONVERGENCE QUESTIONS FOR LIMIT PERIODIC CONTINUED FRACTIONS [J].
THRON, WJ ;
WAADELAND, H .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1981, 11 (04) :641-657
[20]  
Wolff J, 1926, CR HEBD ACAD SCI, V183, P500