Multiple critical points theorems without the Palais-Smale condition

被引:26
作者
Bonanno, G [1 ]
机构
[1] Univ Reggio Calabria, Fac Ingn, Dipartimento Informat Matemat Elettron & Trasport, I-89100 Reggio Di Calabria, Italy
关键词
critical point; multiple solutions; two point boundary value problem; p-Laplacian;
D O I
10.1016/j.jmaa.2004.06.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper multiple critical points theorems, where the Palais-Smale condition on the functional is not requested, are presented. As an application, multiple solutions for a quasilinear two point boundary value problem involving the one-dimensional p-Laplacian are obtained. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:600 / 614
页数:15
相关论文
共 10 条
[1]   Three solutions for a quasilinear two-point boundary-value problem involving the one-dimensional p-laplacian [J].
Averna, D ;
Bonanno, G .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2004, 47 :257-270
[2]  
Averna D., 2003, Topol Methods Nonlinear Anal, V22, P93, DOI [10.12775/TMNA.2003.029, DOI 10.12775/TMNA.2003.029]
[3]   Three symmetric positive solutions for a second-order boundary value problem [J].
Avery, RI ;
Henderson, J .
APPLIED MATHEMATICS LETTERS, 2000, 13 (03) :1-7
[4]   Nonlinear boundary value problems with multiple solutions [J].
Baxley, JV ;
Haywood, LJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (02) :1187-1198
[5]   Some remarks on a three critical points theorem [J].
Bonanno, G .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (04) :651-665
[6]  
DANG H, 1996, ELECT J DIFFERENTIAL, P1
[7]   Existence of multiple solutions for second order boundary value problems [J].
Henderson, J ;
Thompson, HB .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 166 (02) :443-454
[8]   Multiple symmetric positive solutions for a second order boundary value problem [J].
Henderson, J ;
Thompson, HB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (08) :2373-2379
[9]   On a three critical points theorem [J].
Ricceri, B .
ARCHIV DER MATHEMATIK, 2000, 75 (03) :220-226
[10]   A general variational principle and some of its applications [J].
Ricceri, B .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 113 (1-2) :401-410