Large-Scale Integration of a Zinc Metasilicate Interface Layer Guiding Well-Regulated Zn Deposition

被引:180
作者
Guo, Ruiting [1 ]
Liu, Xiong [2 ]
Xia, Fanjie [1 ]
Jiang, Yalong [1 ]
Zhang, Huazhang [3 ]
Huang, Meng [1 ]
Niu, Chaojiang [2 ]
Wu, Jinsong [1 ]
Zhao, Yan [1 ]
Wang, Xuanpeng [3 ,4 ]
Han, Chunhua [1 ]
Mai, Liqiang [1 ,4 ,5 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[2] Zhengzhou Univ, Sch Mat Sci & Engn, Zhengzhou 450001, Peoples R China
[3] Wuhan Univ Technol, Sch Sci, Dept Phys Sci & Technol, Wuhan 430070, Peoples R China
[4] Foshan Xianhu Lab Adv Energy Sci & Technol Guangd, Foshan 528200, Peoples R China
[5] Hubei Longzhong Lab, Xiangyang 441000, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
high-capacity pouch cells; integration mechanisms; large-scale production; uniform Zn plating; zinc metasilicate coatings; ION;
D O I
10.1002/adma.202202188
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Uneven distribution of electric fields at the electrolyte-anode interface and associated Zn dendrite growth is one of the most critical barriers that limit the life span of aqueous zinc-ion batteries. Herein, new-type Zn-A-O (A = Si, Ti) interface layers with thin and uniform thickness, porosity, and hydrophilicity properties are developed to realize homogeneous and smooth Zn plating. For ZnSiO3 nanosheet arrays on Zn foil (Zn@ZSO), their formation follows an "etching-nucleation-growth" mechanism that is confirmed by a well-designed Zn-island-based identical-location microscopy method, the geometric area of which is up to 1000 cm(2) in one-pot synthesis based on a low-temperature wet-chemical method. Guided by the structural advantages of the ZSO layer, the Zn2+ flux gets equalized. Besides ultralow polarization, the life spans of symmetric cells and full cells coupled with a high-mass-loading K0.27MnO2 center dot 0.54H(2)O (8 mg cm(-2)) cathode, are increased by 3-7 times with the Zn@ZSO anode. Moreover, the large-scale preparation of Zn@ZSO foil contributes to a 0.5 Ah multilayer pouch cell with high performance, further confirming its prospects for practical application.
引用
收藏
页数:11
相关论文
共 48 条
[1]   Zinc electrodeposition in the presence of polyethylene glycol 20000 [J].
Ballesteros, J. C. ;
Diaz-Arista, P. ;
Meas, Y. ;
Ortega, R. ;
Trejo, G. .
ELECTROCHIMICA ACTA, 2007, 52 (11) :3686-3696
[2]   The early-stage growth and reversibility of Li electrodeposition in Br-rich electrolytes [J].
Biswal, Prayag ;
Kludze, Atsu ;
Rodrigues, Joshua ;
Deng, Yue ;
Moon, Taylor ;
Stalin, Sanjuna ;
Zhao, Qing ;
Yin, Jiefu ;
Kourkoutis, Lena F. ;
Archer, Lynden A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (02)
[3]   Fluorinated interphase enables reversible aqueous zinc battery chemistries [J].
Cao, Longsheng ;
Li, Dan ;
Pollard, Travis ;
Deng, Tao ;
Zhang, Bao ;
Yang, Chongyin ;
Chen, Long ;
Vatamanu, Jenel ;
Hu, Enyuan ;
Hourwitz, Matt J. ;
Ma, Lin ;
Ding, Michael ;
Li, Qin ;
Hou, Singyuk ;
Gaskell, Karen ;
Fourkas, John T. ;
Yang, Xiao-Qing ;
Xu, Kang ;
Borodin, Oleg ;
Wang, Chunsheng .
NATURE NANOTECHNOLOGY, 2021, 16 (08) :902-+
[4]   Roadmap for advanced aqueous batteries: From design of materials to applications [J].
Chao, Dongliang ;
Zhou, Wanhai ;
Xie, Fangxi ;
Ye, Chao ;
Li, Huan ;
Jaroniec, Mietek ;
Qiao, Shi-Zhang .
SCIENCE ADVANCES, 2020, 6 (21)
[5]   An Artificial Polyacrylonitrile Coating Layer Confining Zinc Dendrite Growth for Highly Reversible Aqueous Zinc-Based Batteries [J].
Chen, Peng ;
Yuan, Xinhai ;
Xia, Yingbin ;
Zhang, Yi ;
Fu, Lijun ;
Liu, Lili ;
Yu, Nengfei ;
Huang, Qinghong ;
Wang, Bin ;
Hu, Xianwei ;
Wu, Yuping ;
van Ree, Teunis .
ADVANCED SCIENCE, 2021, 8 (11)
[6]   A Sieve-Functional and Uniform-Porous Kaolin Layer toward Stable Zinc Metal Anode [J].
Deng, Canbin ;
Xie, Xuesong ;
Han, Junwei ;
Tang, Yan ;
Gao, Jiawei ;
Liu, Cunxin ;
Shi, Xiaodong ;
Zhou, Jiang ;
Liang, Shuquan .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (21)
[7]   Zinc anode stabilized by an organic-inorganic hybrid solid electrolyte interphase [J].
Di, Shengli ;
Nie, Xueyu ;
Ma, Guoqiang ;
Yuan, Wentao ;
Wang, Yuanyuan ;
Liu, Yongchang ;
Shen, Shigang ;
Zhang, Ning .
ENERGY STORAGE MATERIALS, 2021, 43 :375-382
[8]   A Self-Regulated Interface toward Highly Reversible Aqueous Zinc Batteries [J].
Han, Daliang ;
Wang, Zhenxing ;
Lu, Haotian ;
Li, Huan ;
Cui, Changjun ;
Zhang, Zhicheng ;
Sun, Rui ;
Geng, Chuannan ;
Liang, Qinghua ;
Guo, Xiaoxia ;
Mo, Yanbing ;
Zhi, Xing ;
Kang, Feiyu ;
Weng, Zhe ;
Yang, Quan-Hong .
ADVANCED ENERGY MATERIALS, 2022, 12 (09)
[9]   A non-flammable hydrous organic electrolyte for sustainable zinc batteries [J].
Han, Daliang ;
Cui, Changjun ;
Zhang, Kangyu ;
Wang, Zhenxing ;
Gao, Jiachen ;
Guo, Yong ;
Zhang, Zhicheng ;
Wu, Shichao ;
Yin, Lichang ;
Weng, Zhe ;
Kang, Feiyu ;
Yang, Quan-Hong .
NATURE SUSTAINABILITY, 2022, 5 (03) :205-+
[10]   An In-Depth Study of Zn Metal Surface Chemistry for Advanced Aqueous Zn-Ion Batteries [J].
Hao, Junnan ;
Li, Bo ;
Li, Xiaolong ;
Zeng, Xiaohui ;
Zhang, Shilin ;
Yang, Fuhua ;
Liu, Sailin ;
Li, Dan ;
Wu, Chao ;
Guo, Zaiping .
ADVANCED MATERIALS, 2020, 32 (34)