Data-Driven Modeling of Atomic Oxygen Airglow over a Period of Three Solar Cycles

被引:5
作者
Mackovjak, S. [1 ,3 ]
Varga, M. [2 ]
Hrivnak, S. [3 ]
Palkoci, O. [3 ]
Didebulidze, G. G. [4 ]
机构
[1] Slovak Acad Sci, Dept Space Phys, Inst Expt Phys, Kosice, Slovakia
[2] Tech Univ Kosice, Fac Elect Engn & Informat, Dept Cybernet & Artificial Intelligence, Kosice, Slovakia
[3] GlobalL Slovakia Sro, Kosice, Slovakia
[4] Ilia State Univ, Georgian Natl Astrophys Observ, Tbilisi, Georgia
基金
美国国家科学基金会;
关键词
airglow; machine learning; GLOBAL-SCALE OBSERVATIONS; LINE NIGHTGLOW INTENSITY; OH AIRGLOW; THERMOSPHERE; EMISSION; VARIABILITY; BEHAVIOR; TRENDS;
D O I
10.1029/2020JA028991
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Earth's upper atmosphere is a dynamic environment that is continuously affected by space weather from above and atmospheric processes from below. An effective way to observe this interface region is the monitoring of airglow. Since the 1950s, airglow emissions have been systematically measured by ground-based photometers in specific wavelength bands during the nighttime. The availability of the calibrated data from over 30 years of photometric airglow measurements at Abastumani in Georgia (41.75 degrees N, 42.82 degrees E), at wavelengths of 557.7 and 630.0 nm, enable us to investigate if a data-driven model based on advanced machine learning techniques can be successfully employed for modeling airglow intensities. A regression task was performed using the time series of space weather indices and thermosphere-ionosphere parameters. We have found that the developed data-driven model has good consistency with the commonly used GLOW airglow model and also captures airglow variations caused by cycles of solar activity and changes of the seasons. This enables us to visualize the green and red airglow variations over a period of three solar cycles with a one-hour time resolution.
引用
收藏
页数:11
相关论文
共 55 条
[1]   Ultra-violet imaging of the night-time earth by EUSO-Balloon towards space-based ultra-high energy cosmic ray observations [J].
Abdellaoui, G. ;
Abe, S. ;
Adams, J. H., Jr. ;
Ahriche, A. ;
Allard, D. ;
Allen, L. ;
Alonso, G. ;
Anchordoqui, L. ;
Anzalone, A. ;
Arai, Y. ;
Asano, K. ;
Attallah, R. ;
Attoui, H. ;
Ave Pernas, M. ;
Bacholle, S. ;
Bakiri, M. ;
Baragatti, P. ;
Barrillon, P. ;
Bartocci, S. ;
Bayer, J. ;
Beldjilali, B. ;
Belenguer, T. ;
Belkhalfa, N. ;
Bellotti, R. ;
Belov, A. ;
Belov, K. ;
Benmessai, K. ;
Bertaina, M. ;
Biermann, P. L. ;
Biktemerova, S. ;
Bisconti, F. ;
Blanc, N. ;
Blecki, J. ;
Blin-Bondil, S. ;
Bobik, P. ;
Bogomilov, M. ;
Bozzo, E. ;
Briz, S. ;
Bruno, A. ;
Caballero, K. S. ;
Cafagna, F. ;
Campana, D. ;
Capdevielle, J-N ;
Capel, F. ;
Caramete, A. ;
Caramete, L. ;
Carlson, P. ;
Caruso, R. ;
Casolino, M. ;
Cassardo, C. .
ASTROPARTICLE PHYSICS, 2019, 111 :54-71
[2]   Performance and science reach of the Probe of Extreme Multimessenger Astrophysics for ultrahigh-energy particles [J].
Anchordoqui, Luis A. ;
Bergman, Douglas R. ;
Bertaina, Mario E. ;
Fenu, Francesco ;
Krizmanic, John F. ;
Liberatore, Alessandro ;
Olinto, Angela V. ;
Reno, Mary Hall ;
Sarazin, Fred ;
Shinozaki, Kenji ;
Soriano, Jorge F. ;
Ulrich, Ralf ;
Unger, Michael ;
Venters, Tonia M. ;
Wiencke, Lawrence .
PHYSICAL REVIEW D, 2020, 101 (02)
[3]  
[Anonymous], 2015, TENSORFLOW LARGE SCA
[4]  
[Anonymous], 2020, NASA PROBE STUDY REP
[5]   Study of atomic oxygen greenline dayglow emission in thermosphere during geomagnetic storm conditions [J].
Bag, T. ;
Singh, Vir ;
Krishna, M. V. Sunil .
ADVANCES IN SPACE RESEARCH, 2017, 59 (01) :302-310
[6]   DATA MINING AND MACHINE LEARNING IN ASTRONOMY [J].
Ball, Nicholas M. ;
Brunner, Robert J. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2010, 19 (07) :1049-1106
[7]   International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions [J].
Bilitza, D. ;
Altadill, D. ;
Truhlik, V. ;
Shubin, V. ;
Galkin, I. ;
Reinisch, B. ;
Huang, X. .
SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2017, 15 (02) :418-429
[8]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[9]  
Camporeale E., 2018, Machine Learning Techniques for Space Weather, DOI [10.1016/C2016-0-01976-9, DOI 10.1016/C2016-0-01976-9]
[10]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794