On wreathed lexicographic products of graphs

被引:1
作者
Kaschek, Roland [1 ]
机构
[1] Informat Sci Res Ctr, Palmerston North, New Zealand
关键词
Finite graph; Endomorphism; Lexicographic product; Wreath product; ENDOMORPHISMS; NUMBER;
D O I
10.1016/j.disc.2009.10.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper proves a necessary and sufficient condition for the endomorphism monoid End G[H] of a lexicographic product G[H] of graphs G, H to be the wreath product End G ? End H of the monoids End G and End H. The paper also gives respective necessary and sufficient conditions for specialized cases such as for unretractive or triangle-free graphs G. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1275 / 1281
页数:7
相关论文
共 35 条
[1]  
[Anonymous], NATO ASI SERIES C
[2]  
[Anonymous], TEUBNER TEXTE MATH
[3]   ENDOMORPHISM SPECTRA OF GRAPHS [J].
BOTTCHER, M ;
KNAUER, U .
DISCRETE MATHEMATICS, 1992, 109 (1-3) :45-57
[4]  
DORFLER W, 1972, GLAS MAT, V7, P159
[5]   WREATH-PRODUCTS OF MONOIDS WITH SMALL CATEGORIES WHOSE PRINCIPAL ONE-SIDED IDEALS FORM TREES [J].
FLEISCHER, V ;
KNAUER, U .
JOURNAL OF ALGEBRA, 1994, 170 (01) :69-100
[6]  
FLEISCHER V, 1988, LECT NOTES MATH, V1320, P84
[7]  
Fleischer V., 1986, P ACAD SCI ESTONIAN, V35, P237
[8]   ON THE GROUPS OF REPEATED GRAPHS [J].
FRUCHT, R .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1949, 55 (04) :418-420
[9]  
Gross J. L., 2003, Handbook of Graph Theory, DOI 10.1201/9780203490204
[10]   ON THE GROUP OF THE COMPOSITION OF 2 GRAPHS [J].
HARARY, F .
DUKE MATHEMATICAL JOURNAL, 1959, 26 (01) :29-34