Convolution identities for Dunkl orthogonal polynomials from the osp(1|2) Lie superalgebra

被引:0
作者
Koelink, Erik [1 ]
Lemay, Jean-Michel [2 ]
Vinet, Luc [2 ]
机构
[1] Radboud Univ Nijmegen, IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands
[2] Univ Montreal, Ctr Rech Math, CP 6128,Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
GENERATING-FUNCTIONS; ALGEBRA; REPRESENTATIONS; COEFFICIENTS; OPERATORS; FORMULAS;
D O I
10.1063/1.5111344
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
New convolution identities for orthogonal polynomials belonging to the q = -1 analog of the Askey-scheme are obtained. Specialization of the Chihara polynomials will play a central role as the eigenfunctions of a special element of the Lie superalgebra osp(1|2) in the positive discrete series representation. Using the Clebsch-Gordan coefficients, a convolution identity for the specialized Chihara, the dual -1 Hahn and the Big -1 Jacobi polynomials are found. Using the Racah coefficients, a convolution identity for the Big -1 Jacobi and the Bannai-Ito polynomials is found. Finally, these results are applied to construct a bilinear generating function for the Big -1 Jacobi polynomials. Published under license by AIP Publishing.
引用
收藏
页数:16
相关论文
共 34 条
  • [1] Bannai Eiichi, 1984, ALGEBRAIC COMBINATOR
  • [2] Baseilhac P, 2018, LETT MATH PHYS, V108, P1623, DOI 10.1007/s11005-017-1041-0
  • [3] Generating functions for the osp (1|2) Clebsch-Gordan coefficients
    Bergeron, Geoffroy
    Vinet, Luc
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (11)
  • [4] De Bie H., 2017, PHYS MATH ASPECTS SY, P349
  • [5] De Bie H., ARXIV190207883
  • [7] REFLECTION GROUPS AND ORTHOGONAL POLYNOMIALS ON THE SPHERE
    DUNKL, CF
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1988, 197 (01) : 33 - 60
  • [8] Two-variable -1 Jacobi polynomials
    Genest, Vincent X.
    Lemay, Jean-Michel
    Vinet, Luc
    Zhedanov, Alexei
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2015, 26 (06) : 411 - 425
  • [9] A Laplace-Dunkl Equation on S 2 and the Bannai-Ito Algebra
    Genest, Vincent X.
    Vinet, Luc
    Zhedanov, Alexei
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 336 (01) : 243 - 259
  • [10] The Dunkl Oscillator in the Plane II: Representations of the Symmetry Algebra
    Genest, Vincent X.
    Ismail, Mourad E. H.
    Vinet, Luc
    Zhedanov, Alexei
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 329 (03) : 999 - 1029