On the Milne problem and the hydrodynamic limit for a steady Boltzmann equation model

被引:14
作者
Arkeryd, L
Nouri, A
机构
[1] Chalmers Institute of Technology,Department of Mathematics
[2] UMR 5585,undefined
[3] INSA,undefined
关键词
Boltzmann asymptotics; boundary layer; hydrodynamic limit; Maxwellian limit; Milne problem; stationary gas kinetics; weak methods;
D O I
10.1023/A:1018655815285
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a stationary nonlinear Boltzmann equation in a slab with a particular truncation in the collision operator, the Milne problem for the boundary layer together with a weak type of hydrodynamic behavior in the interior of the slab are studied by nonperturbative methods in the small-mean-free-path limit.
引用
收藏
页码:993 / 1019
页数:27
相关论文
共 32 条
[1]   On the stationary Povzner equation in Rn [J].
Arkeryd, L ;
Nouri, A .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1999, 39 (01) :115-153
[2]   A condensation-evaporation problem in kinetic theory [J].
Arkeryd, L ;
Nouri, A .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (01) :30-47
[3]  
ARKERYD L, 1998, ANN SCUOLA NORM SUP, V27, P533
[4]  
ARKERYD L, 1998, L1 SOLUTIONS STATION
[5]   NONEXISTENCE OF A STEADY RAREFIED SUPERSONIC-FLOW IN A HALF-SPACE [J].
ARTHUR, MD ;
CERCIGNANI, C .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1980, 31 (05) :634-645
[6]  
Bardos C., 1991, Mathematical Models & Methods in Applied Sciences, V1, P235, DOI 10.1142/S0218202591000137
[7]   THE MILNE AND KRAMERS PROBLEMS FOR THE BOLTZMANN-EQUATION OF A HARD-SPHERE GAS [J].
BARDOS, C ;
CAFLISCH, RE ;
NICOLAENKO, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (03) :323-352
[8]   FLUID DYNAMIC LIMITS OF KINETIC-EQUATIONS .1. FORMAL DERIVATIONS [J].
BARDOS, C ;
GOLSE, F ;
LEVERMORE, D .
JOURNAL OF STATISTICAL PHYSICS, 1991, 63 (1-2) :323-344
[9]   FLUID DYNAMIC LIMITS OF KINETIC EQUATIONS-II CONVERGENCE PROOFS FOR THE BOLTZMANN-EQUATION [J].
BARDOS, C ;
GOLSE, F ;
LEVERMORE, CD .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1993, 46 (05) :667-753
[10]  
BARDOS C, 1985, PROGR PHYS, V10, P235