ZrO2 Nanoparticles: a density functional theory study of structure, properties and reactivity

被引:17
作者
Puigdollers, Antonio Ruiz [1 ]
Illas, Francesc [2 ,3 ]
Pacchioni, Gianfranco [1 ]
机构
[1] Univ Milano Bicocca, Dipartimento Sci Mat, Via R Cozzi 55, I-20125 Milan, Italy
[2] Univ Barcelona, Dept Ciencia Mat & Quim Fis, E-08028 Barcelona, Spain
[3] Univ Barcelona, Inst Quim Teor & Computac IQTCUB, E-08028 Barcelona, Spain
基金
欧盟地平线“2020”;
关键词
Zirconia; Nanoparticles; Au adsorption; Hydrogen adsorption; Density functional theory; TOTAL-ENERGY CALCULATIONS; CARBON-DIOXIDE; CERIA NANOPARTICLES; GOLD CATALYSTS; ZIRCONIA; TIO2; STATE; SIZE; 1ST-PRINCIPLES; STABILIZATION;
D O I
10.1007/s12210-016-0591-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The atomic structure, thermodynamic stability and electronic structure of a series of zirconia nanoparticles in the range of 0.9 and 2 nm in size have been investigated by means of the density functional theory (DFT)-based calculations. We show that the calculated formation energies scale linearly with the size of the nanoparticles. The calculated formation energies of neutral oxygen vacancies are considerably smaller than those in extended surfaces. In this respect, nanostructuring can be substantial for tuning the reactivity of zirconia and its reducibility. Also, the low-coordinated sites introduce defective states in the electronic structure reducing the effective band gap. This results in enhanced interaction with deposited particles as well as in modified catalytic and possibly photocatalytic activity. This has been investigated by considering (1) the adsorption of a single Au atom on different adsorption sites in the surfaces of the nanoparticles, leading indeed to a type of bonding that is not found on extended and stoichiometric zirconia surfaces and (2) the adsorption of an H-2 molecule which dissociates homolytically, with formation of two protons and two Zr3+ ions, while on the extended ZrO2 surface the preferred process is heterolytic dissociation into H+ and H- fragments.
引用
收藏
页码:19 / 27
页数:9
相关论文
共 45 条
[1]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[2]  
[Anonymous], ACS CATAL
[3]   Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry [J].
Barnard, AS ;
Curtiss, LA .
NANO LETTERS, 2005, 5 (07) :1261-1266
[4]   The problem with determining atomic structure at the nanoscale [J].
Billinge, Simon J. L. ;
Levin, Igor .
SCIENCE, 2007, 316 (5824) :561-565
[5]   Approaching nanoscale oxides: models and theoretical methods [J].
Bromley, Stefan T. ;
Moreira, Iberio de P. R. ;
Neyman, Konstantin M. ;
Illas, Francesc .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (09) :2657-2670
[6]   Pure Tetragonal ZrO2 Nanoparticles Synthesized by Pulsed Plasma in Liquid [J].
Chen, Liliang ;
Mashimo, Tsutomo ;
Omurzak, Emil ;
Okudera, Hiroki ;
Iwamoto, Chihiro ;
Yoshiasa, Akira .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (19) :9370-9375
[7]   First-principles study of the surfaces of zirconia [J].
Christensen, A ;
Carter, EA .
PHYSICAL REVIEW B, 1998, 58 (12) :8050-8064
[8]   Support effect in high activity gold catalysts for CO oxidation [J].
Comotti, M ;
Li, WC ;
Spliethoff, B ;
Schüth, F .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (03) :917-924
[9]   Some general aspects of confinement in nanomaterials [J].
Dosch, H .
APPLIED SURFACE SCIENCE, 2001, 182 (3-4) :192-195
[10]   Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study [J].
Dudarev, SL ;
Botton, GA ;
Savrasov, SY ;
Humphreys, CJ ;
Sutton, AP .
PHYSICAL REVIEW B, 1998, 57 (03) :1505-1509