Nanocrystalline Diamond for Near Junction Heat Spreading in GaN Power HEMTs

被引:0
作者
Anderson, T. J. [1 ]
Hobart, K. D. [1 ]
Tadjer, M. J. [1 ]
Koehler, A. D. [1 ]
Feygelson, T. I. [1 ]
Hite, J. K. [1 ]
Pate, B. B. [1 ]
Kub, F. J. [1 ]
Eddy, C. R., Jr. [1 ]
机构
[1] Naval Res Lab, Washington, DC 20375 USA
来源
2013 IEEE COMPOUND SEMICONDUCTOR INTEGRATED CIRCUIT SYMPOSIUM (CSICS): INTEGRATED CIRCUITS IN GAAS, INP, SIGE, GAN AND OTHER COMPOUND SEMICONDUCTORS | 2013年
关键词
GaN; HEMT; nanocrystalline diamond; NANODIAMOND; DEVICES; RAMAN;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Reduced performance in Gallium Nitride (GaN)-based high electron mobility transistors (HEMTs) as a result of self-heating has been well-documented. A new approach, termed "gate after diamond," is shown to improve the thermal budget of the deposition process and enable large-area diamond without degrading the gate metal. Nanocrystalline (NCD)-capped devices had 20% lower channel temperature at equivalent power dissipation. Improved electrical characteristics were observed, notably improved on-resistance and breakdown voltage, and reduced gate leakage. Further refinements to the NCD growth process have enabled deposition directly on the GaN surface. Pulsed I-V measurements indicate a comparable passivation effect to conventional SiNX-capped devices.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Thermal Resistance Extraction of AlGaN/GaN Depletion-Mode HEMTs on Diamond
    Jianzhi Wu
    Jie Min
    Wei Lu
    Paul. K. L. Yu
    Journal of Electronic Materials, 2015, 44 : 1275 - 1280
  • [32] Thermal Resistance Extraction of AlGaN/GaN Depletion-Mode HEMTs on Diamond
    Wu, Jianzhi
    Min, Jie
    Lu, Wei
    Yu, Paul. K. L.
    JOURNAL OF ELECTRONIC MATERIALS, 2015, 44 (05) : 1275 - 1280
  • [33] Low Thermal Budget Growth of Near-Isotropic Diamond Grains for Heat Spreading in Semiconductor Devices
    Malakoutian, Mohamadali
    Zheng, Xiang
    Woo, Kelly
    Soman, Rohith
    Kasperovich, Anna
    Pomeroy, James
    Kuball, Martin
    Chowdhury, Srabanti
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (47)
  • [34] High Power, Wideband Frequency Doubler Design Using AlGaN/GaN HEMTs and Filtering
    Wong, Claudia
    Yuk, Kelvin
    Branner, G. R.
    Bahadur, Syed Reza
    2011 41ST EUROPEAN MICROWAVE CONFERENCE, 2011, : 587 - 590
  • [35] Dynamic Gate Breakdown of p-Gate GaN HEMTs in Inductive Power Switching
    Wang, Bixuan
    Zhang, Ruizhe
    Wang, Hengyu
    He, Quanbo
    Song, Qihao
    Li, Qiang
    Udrea, Florin
    Zhang, Yuhao
    IEEE ELECTRON DEVICE LETTERS, 2023, 44 (02) : 217 - 220
  • [36] State of the art on gate insulation and surface passivation for GaN-based power HEMTs
    Hashizume, Tamotsu
    Nishiguchi, Kenya
    Kaneki, Shota
    Kuzmik, Jan
    Yatabe, Zenji
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2018, 78 : 85 - 95
  • [37] Failure Analysis of AlGaN/GaN Power HEMTs through an innovative sample preparation approach
    Torrisi, R. L.
    Adamo, S.
    Alessandrino, S.
    Bottari, C.
    Carbone, B.
    Palmisciano, M.
    Vitanza, E.
    2022 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM (IRPS), 2022,
  • [38] Reliability and failure analysis in power GaN-HEMTs: an overview
    Meneghini, Matteo
    Rossetto, Isabella
    De Santi, Carlo
    Rampazzo, Fabiana
    Tajalli, Alaleh
    Barbato, Alessandro
    Ruzzarin, Maria
    Borga, Matteo
    Canato, Eleonora
    Zanoni, Enrico
    Meneghesso, Gaudenzio
    2017 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM (IRPS), 2017,
  • [39] Trapping effects and microwave power performance in AlGaN/GaN HEMTs
    Binari, SC
    Ikossi, K
    Roussos, JA
    Kruppa, W
    Park, D
    Dietrich, HB
    Koleske, DD
    Wickenden, AE
    Henry, RL
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2001, 48 (03) : 465 - 471
  • [40] Efficacy of ? -Gate in RF Power Performance of Thin GaN Buffer AlGaN/GaN HEMTs
    Sehra, Khushwant
    Chanchal, Anupama
    Anand, Anupama
    Kumari, Vandana
    Reeta, Meena
    Gupta, Mridula
    Mishra, Meena
    Rawal, D. S.
    Saxena, Manoj
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2023, 70 (05) : 2612 - 2615