Nanocrystalline Diamond for Near Junction Heat Spreading in GaN Power HEMTs

被引:0
|
作者
Anderson, T. J. [1 ]
Hobart, K. D. [1 ]
Tadjer, M. J. [1 ]
Koehler, A. D. [1 ]
Feygelson, T. I. [1 ]
Hite, J. K. [1 ]
Pate, B. B. [1 ]
Kub, F. J. [1 ]
Eddy, C. R., Jr. [1 ]
机构
[1] Naval Res Lab, Washington, DC 20375 USA
来源
2013 IEEE COMPOUND SEMICONDUCTOR INTEGRATED CIRCUIT SYMPOSIUM (CSICS): INTEGRATED CIRCUITS IN GAAS, INP, SIGE, GAN AND OTHER COMPOUND SEMICONDUCTORS | 2013年
关键词
GaN; HEMT; nanocrystalline diamond; NANODIAMOND; DEVICES; RAMAN;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Reduced performance in Gallium Nitride (GaN)-based high electron mobility transistors (HEMTs) as a result of self-heating has been well-documented. A new approach, termed "gate after diamond," is shown to improve the thermal budget of the deposition process and enable large-area diamond without degrading the gate metal. Nanocrystalline (NCD)-capped devices had 20% lower channel temperature at equivalent power dissipation. Improved electrical characteristics were observed, notably improved on-resistance and breakdown voltage, and reduced gate leakage. Further refinements to the NCD growth process have enabled deposition directly on the GaN surface. Pulsed I-V measurements indicate a comparable passivation effect to conventional SiNX-capped devices.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Reduced Self-Heating in AlGaN/GaN HEMTs Using Nanocrystalline Diamond Heat-Spreading Films
    Tadjer, Marko J.
    Anderson, Travis J.
    Hobart, Karl D.
    Feygelson, Tatyana I.
    Caldwell, Joshua D.
    Eddy, Charles R., Jr.
    Kub, Fritz J.
    Butler, James E.
    Pate, Bradford
    Melngailis, John
    IEEE ELECTRON DEVICE LETTERS, 2012, 33 (01) : 23 - 25
  • [2] Managing Heat with Diamond: the Example of Diamond/GaN HEMTs
    Mendes, Joana Catarina
    Liehr, Michael
    2022 IEEE 26TH WORKSHOP ON SIGNAL AND POWER INTEGRITY (SPI), 2022,
  • [3] Diamond/GaN HEMTs: Where from and Where to?
    Mendes, Joana C.
    Liehr, Michael
    Li, Changhui
    MATERIALS, 2022, 15 (02)
  • [4] Near-junction microfluidic cooling for GaN HEMT with capped diamond heat spreader
    Zhang, Hang
    Guo, Zhixiong
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 186
  • [5] Impacts of diamond heat spreader on the thermo-mechanical characteristics of high-power AlGaN/GaN HEMTs
    Zhang, R.
    Zhao, W. S.
    Yin, W. Y.
    Zhao, Z. G.
    Zhou, H. J.
    DIAMOND AND RELATED MATERIALS, 2015, 52 : 25 - 31
  • [6] Simulation of thermal management in AlGaN/GaN HEMTs with integrated diamond heat spreaders
    Wang, A.
    Tadjer, M. J.
    Calle, F.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2013, 28 (05)
  • [7] Thermal characterization of polycrystalline diamond thin film heat spreaders grown on GaN HEMTs
    Zhou, Yan
    Ramaneti, Rajesh
    Anaya, Julian
    Korneychuk, Svetlana
    Derluyn, Joff
    Sun, Huarui
    Pomeroy, James
    Verbeeck, Johan
    Haenen, Ken
    Kuball, Martin
    APPLIED PHYSICS LETTERS, 2017, 111 (04)
  • [8] Measurement of Junction Temperature in AlGaN/GaN HEMTs
    Gao Li
    Guo ChunSheng
    Li ShiWei
    2017 IEEE 24TH INTERNATIONAL SYMPOSIUM ON THE PHYSICAL AND FAILURE ANALYSIS OF INTEGRATED CIRCUITS (IPFA), 2017,
  • [9] Nanocrystalline Diamond Integration with III-Nitride HEMTs
    Anderson, T. J.
    Hobart, K. D.
    Tadjer, M. J.
    Koehler, A. D.
    Imhoff, E. A.
    Hite, J. K.
    Feygelson, T. I.
    Pate, B. B.
    Eddy, C. R., Jr.
    Kub, F. J.
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2017, 6 (02) : Q3036 - Q3039
  • [10] An Embedded Power Section with GaN HEMTs
    Li, Tianyu
    Voigt, Christian
    Lindemann, Anderas
    Boettcher, Lars
    Erhardt, Eugen
    2021 IEEE 12TH ENERGY CONVERSION CONGRESS AND EXPOSITION - ASIA (ECCE ASIA), 2021, : 26 - 31