The predictive mind: An introduction to Bayesian Brain Theory

被引:3
作者
Bottemanne, H. [1 ,2 ,3 ]
Longuet, Y. [4 ]
Gauld, C. [5 ,6 ]
机构
[1] Sorbonne Univ, Paris Brain Inst, Inst Cerveau ICM, CNRS,Inserm, Paris, France
[2] Sorbonne Univ, Dept Philosophy, SND Res Unit, UMR 8011,CNRS, Paris, France
[3] Sorbonne Univ, Pitie Salpetriere Hosp, Assistance Publ Hop Paris AP HP, Dept Psychiat,DMU Neurosci, Paris, France
[4] Claude Bernard Lyon 1 Univ, Dept Psychiat, F-69000 Lyon, France
[5] Univ Grenoble, Dept Psychiat, F-38000 Grenoble, France
[6] Sorbonne Univ, IHPST UMR 8590, F-1 Paris, France
来源
ENCEPHALE-REVUE DE PSYCHIATRIE CLINIQUE BIOLOGIQUE ET THERAPEUTIQUE | 2022年 / 48卷 / 04期
关键词
Predictive processing; Predictive coding; Bayesian brain; Belief; Bayesianism; Computational neuroscience; Computational psychiatry; Belief updating; Interoception; INFORMATION; BEHAVIOR; ERROR;
D O I
10.1016/j.encep.2021.09.011
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The question of how the mind works is at the heart of cognitive science. It aims to understand and explain the complex processes underlying perception, decision-making and learning, three fundamental areas of cognition. Bayesian Brain Theory, a computational approach derived from the principles of Predictive Processing (PP), offers a mechanistic and mathematical formulation of these cognitive processes. This theory assumes that the brain encodes beliefs (probabilistic states) to generate predictions about sensory input, then uses prediction errors to update its beliefs. In this paper, we present an introduction to the fundamentals of Bayesian Brain Theory. We show how this innovative theory hybridizes concepts inherited from the philosophy of mind and experimental data from neuroscience, and how it translates complex cognitive processes such as perception, action, emotion, or belief, or even the psychiatric symptomatology. (c) 2021 L'Encephale, Paris.
引用
收藏
页码:436 / 444
页数:9
相关论文
共 70 条
[1]   Lapicque's introduction of the integrate-and-fire model neuron (1907) [J].
Abbott, LF .
BRAIN RESEARCH BULLETIN, 1999, 50 (5-6) :303-304
[2]   Synaptic plasticity as Bayesian inference [J].
Aitchison, Laurence ;
Jegminat, Jannes ;
Menendez, Jorge Aurelio ;
Pfister, Jean-Pascal ;
Pouget, Alexandre ;
Latham, Peter E. .
NATURE NEUROSCIENCE, 2021, 24 (04) :565-571
[3]   Can Computational Goals Inform Theories of Vision? [J].
Anderson, Barton L. .
TOPICS IN COGNITIVE SCIENCE, 2015, 7 (02) :274-286
[4]  
Bar M., 2011, PREDICTIONBRAIN US
[5]   An active inference theory of allostasis and interoception in depression [J].
Barrett, Lisa Feldman ;
Quigley, Karen S. ;
Hamilton, Paul .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2016, 371 (1708)
[6]   Interoceptive predictions in the brain [J].
Barrett, Lisa Feldman ;
Simmons, W. Kyle .
NATURE REVIEWS NEUROSCIENCE, 2015, 16 (07) :419-429
[7]   Canonical Microcircuits for Predictive Coding [J].
Bastos, Andre M. ;
Usrey, W. Martin ;
Adams, Rick A. ;
Mangun, George R. ;
Fries, Pascal ;
Friston, Karl J. .
NEURON, 2012, 76 (04) :695-711
[8]   The Non-Redundant Contributions of Marr's Three Levels of Analysis for Explaining Information-Processing Mechanisms [J].
Bechtel, William ;
Shagrir, Oron .
TOPICS IN COGNITIVE SCIENCE, 2015, 7 (02) :312-322
[9]   Neural Circuits of Interoception [J].
Berntson, Gary G. ;
Khalsa, Sahib S. .
TRENDS IN NEUROSCIENCES, 2021, 44 (01) :17-28
[10]   Perceptual decision making: drift-diffusion model is equivalent to a Bayesian model [J].
Bitzer, Sebastian ;
Park, Hame ;
Blankenburg, Felix ;
Kiebel, Stefan J. .
FRONTIERS IN HUMAN NEUROSCIENCE, 2014, 8