Enhanced thermal conductivity of copper-doped polyethylene glycol/urchin-like porous titanium dioxide phase change materials for thermal energy storage

被引:25
作者
Hou, Junying [1 ]
Wang, Yaya [1 ]
Liu, Jingchun [1 ]
Zhao, Jianguo [1 ]
Long, Sifang [1 ]
Hao, Jianjun [1 ]
机构
[1] Agr Univ Hebei, Coll Mech & Elect Engn, Baoding 071001, Hebei, Peoples R China
关键词
phase change material; thermal conductivity; thermal energy storage; urchin-like porous TiO2; GRAPHITE COMPOSITE; MESOPOROUS SILICA; PEG; LATENT; NANOPARTICLES; NANOMATERIALS; PERFORMANCE; FABRICATION; PARAFFIN; DELIVERY;
D O I
10.1002/er.5045
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A composite phase change material (PCM) of copper-doped polyethylene glycol (PEG) 2000 impregnated urchin-like porous titanium dioxide (TiO2) microspheres (PEG/TiO2) was successfully synthesised. The urchin-like porous TiO2 structures contain hollow cavities that can provide a high PEG loading capacity of up to 80 wt%. Copper nanoparticles were uniformly dispersed on the outer and inner surfaces of the 0.8PEG/TiO2 as additives to enhance the thermal conductivity of the composite PCM. The latent heat of the Cu/PEG/TiO2 porous composite PCM reached 133.8 J/g, and the thermal conductivity was 0.58 W/(mK), which was 152.2% higher than that of TiO2 and 38.1% higher than 0.8PEG/TiO2. Moreover, the Cu/PEG/TiO2 porous composite PCM has excellent thermal stability and reliability.
引用
收藏
页码:1909 / 1919
页数:11
相关论文
共 54 条
  • [1] ENERGY STORAGE Chemical storage of renewable energy
    Ager, Joel W.
    Lapkin, Alexei A.
    [J]. SCIENCE, 2018, 360 (6390) : 707 - 708
  • [2] Latent and sensible energy storage enhancement of nano-nitrate molten salt
    Awad, Afrah
    Burns, Alan
    Waleed, Muayad
    Al-Yasiri, Mortatha
    Wen, Dongsheng
    [J]. SOLAR ENERGY, 2018, 172 : 191 - 197
  • [3] Coaxial electro-spun PEG/PA6 composite fibers: Fabrication and characterization
    Babapoor, Aziz
    Karimi, Gholamreza
    Golestaneh, Seyyed Iman
    Mezjin, Mehdi Ahmadi
    [J]. APPLIED THERMAL ENGINEERING, 2017, 118 : 398 - 407
  • [4] Novel form stable phase change materials based on the composites of polyethylene glycol/polymeric solid-solid phase change material
    Chen, Changzhong
    Liu, Wenmin
    Wang, Zhiqiang
    Peng, Kelin
    Pan, Wanli
    Xie, Qian
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2015, 134 : 80 - 88
  • [5] Synthesis of ammonium and sulfate ion-functionalized titanium dioxide for photocatalytic applications
    Cheng, J. L.
    Mi, J. Y.
    Miao, H.
    Fatanah, B. S. A. Sharifah
    Wong, S. F.
    Tay, B. K.
    [J]. APPLIED NANOSCIENCE, 2017, 7 (3-4) : 117 - 124
  • [6] Thermal energy storage for low and medium temperature applications using phase change materials - A review
    da Cunha, Jose Pereira
    Eames, Philip
    [J]. APPLIED ENERGY, 2016, 177 : 227 - 238
  • [7] Comparative Synthesis of Cu and Cu2O Nanoparticles from Different Copper Precursors in an Ionic Liquid or Propylene Carbonate
    Esteban, Raquel Marcos
    Meyer, Hajo
    Kim, Jiyeon
    Gemel, Christian
    Fischer, Roland A.
    Janiak, Christoph
    [J]. EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2016, (13-14) : 2106 - 2113
  • [8] Review on solid-solid phase change materials for thermal energy storage: Molecular structure and thermal properties
    Fallahi, Ali
    Guldentops, Gert
    Tao, Mingjiang
    Granados-Focil, Sergio
    Van Dessel, Steven
    [J]. APPLIED THERMAL ENGINEERING, 2017, 127 : 1427 - 1441
  • [9] Increased Thermal Conductivity of Eicosane-Based Composite Phase Change Materials in the Presence of Graphene Nanoplatelets
    Fang, Xin
    Fan, Li-Wu
    Ding, Qing
    Wang, Xiao
    Yao, Xiao-Li
    Hou, Jian-Feng
    Yu, Zi-Tao
    Cheng, Guan-Hua
    Hu, Ya-Cai
    Cen, Ke-Fa
    [J]. ENERGY & FUELS, 2013, 27 (07) : 4041 - 4047
  • [10] Modified mesoporous silica filled with PEG as a shape-stabilized phase change materials for improved thermal energy storage performance
    Feng, Daili
    Feng, Yanhui
    Li, Pei
    Zang, Yuyang
    Wang, Chen
    Zhang, Xinxin
    [J]. MICROPOROUS AND MESOPOROUS MATERIALS, 2020, 292