Role of dispersive interactions in the CO adsorption on MgO(001): periodic B3LYP calculations augmented with an empirical dispersion term

被引:58
作者
Civalleri, Bartolomeo [1 ,2 ]
Maschio, Lorenzo [1 ,2 ]
Ugliengo, Piero [1 ,2 ]
Zicovich-Wilson, Claudio M. [3 ]
机构
[1] UdR Torino, Dipartimento Chim IFM, NIS Ctr Excellence, Turin, Italy
[2] UdR Torino, INSTM Mat Sci & Technol Natl Consortium, Turin, Italy
[3] Univ Autonoma Estado Morelos, Fac Ciencias, Cuernavaca 62210, Morelos, Mexico
关键词
DENSITY-FUNCTIONAL THEORY; HARTREE-FOCK GRADIENTS; NONCOVALENT INTERACTIONS; CELL PARAMETER; COMPLEXES; SYSTEMS; CRYSTALS; SURFACES; RANGE; APPLICABILITY;
D O I
10.1039/c001192d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Empirically dispersion corrected B3LYP method (i.e. B3LYP-D) is demonstrated to give excellent results for structure, adsorption energy and vibrational frequency shift for the CO molecule adsorbed on the MgO(001) surface, a system considered a challenge for current density functional methods. A periodic approach was adopted to model the interaction using a three-layer slab model. For the B3LYP-D* method an interaction energy of -13.1 kJ mol(-1) is computed at low-coverage in very good agreement with experimental evidence (-12.6 kJ mol(-1)) as well as a positive CO vibrational shift of 10 cm(-1) to be compared with the experimental value of 14 cm(-1).
引用
收藏
页码:6382 / 6386
页数:5
相关论文
共 52 条
[21]   Semiempirical GGA-type density functional constructed with a long-range dispersion correction [J].
Grimme, Stefan .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2006, 27 (15) :1787-1799
[22]  
HAZEN RM, 1976, AM MINERAL, V61, P266
[23]   Density functional theory augmented with an empirical dispersion term.: Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations [J].
Jurecka, Petr ;
Cerny, Jiri ;
Hobza, Pavel ;
Salahub, Dennis R. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2007, 28 (02) :555-569
[24]   Application of semiempirical long-range dispersion corrections to periodic systems in density functional theory [J].
Kerber, Torsten ;
Sierka, Marek ;
Sauer, Joachim .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2008, 29 (13) :2088-2097
[25]  
Koch W., 2001, CHEM GUIDE DENSITY F
[26]   CAN (SEMI)LOCAL DENSITY-FUNCTIONAL THEORY ACCOUNT FOR THE LONDON DISPERSION FORCES [J].
KRISTYAN, S ;
PULAY, P .
CHEMICAL PHYSICS LETTERS, 1994, 229 (03) :175-180
[27]   A density functional for sparse matter [J].
Langreth, D. C. ;
Lundqvist, B. I. ;
Chakarova-Kack, S. D. ;
Cooper, V. R. ;
Dion, M. ;
Hyldgaard, P. ;
Kelkkanen, A. ;
Kleis, J. ;
Kong, Lingzhu ;
Li, Shen ;
Moses, P. G. ;
Murray, E. ;
Puzder, A. ;
Rydberg, H. ;
Schroder, E. ;
Thonhauser, T. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (08)
[28]   DEVELOPMENT OF THE COLLE-SALVETTI CORRELATION-ENERGY FORMULA INTO A FUNCTIONAL OF THE ELECTRON-DENSITY [J].
LEE, CT ;
YANG, WT ;
PARR, RG .
PHYSICAL REVIEW B, 1988, 37 (02) :785-789
[29]   Can the DFT-D method describe the full range of noncovalent interactions found in large biomolecules? [J].
Morgado, Claudio ;
Vincent, Mark A. ;
Hillier, Ian H. ;
Shan, Xiao .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2007, 9 (04) :448-451
[30]   Energy ranking of molecular crystals using density functional theory calculations and an empirical van der Waals correction [J].
Neumann, MA ;
Perrin, MA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (32) :15531-15541