Existence results for a Kirchhoff-type equation involving fractional p(x)-Laplacian

被引:4
作者
Zhang, Jinguo [1 ]
Yang, Dengyun [1 ]
Wu, Yadong [1 ]
机构
[1] Jiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R China
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 08期
基金
中国国家自然科学基金;
关键词
fractional p(x)-Laplace operator; Kirchhoff-type equation; variational methods;
D O I
10.3934/math.2021486
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to investigate the existence of weak solutions for a Kirchhoff type problem driven by a non-local integro-differential operator as follows: {M(integral R-2N) |u(x) - u(y)|(p(x,y))/p(x, y)|x -y|(N+sp(x,y)dxdy) ) (-Delta p(x))(s) u(x) = f(x, u) in Omega, u = 0 in RN\omega, where omega is a smooth bounded open set in R-N, s E (0, 1) and p is a positive continuous function with sp(x, y) < N, M and f are two continuous functions, (-Delta p(x))s is the fractional p(x)-Laplacian operator. Using variational methods combined with the theory of the generalized Lebesgue Sobolev space, we prove the existence of nontrivial solution for the problem in an appropriate space of functions.
引用
收藏
页码:8390 / 8403
页数:14
相关论文
共 29 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]   EIGENVALUE PROBLEMS INVOLVING THE FRACTIONAL p(x)-LAPLACIAN OPERATOR [J].
Azroul, E. ;
Benkirane, A. ;
Shimi, M. .
ADVANCES IN OPERATOR THEORY, 2019, 4 (02) :539-555
[3]   ON A NEW FRACTIONAL SOBOLEV SPACE AND APPLICATIONS TO NONLOCAL VARIATIONAL PROBLEMS WITH VARIABLE EXPONENT [J].
Bahrouni, Anouar ;
Radulescu, Vicentiu D. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2018, 11 (03) :379-389
[4]   Comparison and sub-supersolution principles for the fractional p(x)-Laplacian [J].
Bahrouni, Anouar .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 458 (02) :1363-1372
[5]   Multiple solutions for a Kirchhoff-type problem involving the p(x)-Laplacian operator [J].
Cammaroto, F. ;
Vilasi, L. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (05) :1841-1852
[6]   On an elliptic equation of p-Kirchhoff type via variational methods [J].
Correa, Francisco Julio S. A. ;
Figueiredo, Giovany M. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2006, 74 (02) :263-277
[7]   On a p-Kirchhoff equation via Krasnoselskii's genus [J].
Correa, Francisco Julio S. A. ;
Figueiredo, Giovany M. .
APPLIED MATHEMATICS LETTERS, 2009, 22 (06) :819-822
[8]  
CruzUribe DV, 2013, APPL NUMER HARMON AN, DOI 10.1007/978-3-0348-0548-3
[9]   Solutions for a p(x)-Kirchhoff type equation with Neumann boundary data [J].
Dai, Guowei ;
Ma, Ruyun .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (05) :2666-2680
[10]   Infinitely many non-negative solutions for a p(x)-Kirchhoff-type problem with Dirichlet boundary condition [J].
Dai, Guowei ;
Wei, Jian .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (10) :3420-3430