Spitzer's identity and the algebraic Birkhoff decomposition in pQFT

被引:81
作者
Ebrahimi-Fard, K
Guo, L
Kreimer, D
机构
[1] Inst Poincare, F-75231 Paris 05, France
[2] Univ Bonn, Inst Phys, D-53115 Bonn, Germany
[3] Rutgers State Univ, Dept Math & Comp Sci, Newark, NJ 07102 USA
[4] CNRS, IHES, F-91440 Bures Sur Yvette, France
[5] Boston Univ, Ctr Math Phys, Boston, MA 02215 USA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2004年 / 37卷 / 45期
关键词
D O I
10.1088/0305-4470/37/45/020
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we continue to explore the notion of Rota-Baxter algebras in the context of the Hopf algebraic approach to renormalization theory in perturbative quantum field theory. We show in very simple algebraic terms that the solutions of the recursively defined formulae for the Birkhoff factorization of regularized Hopf algebra characters, i.e. Feynman rules, naturally give a non-commutative generalization of the well-known Spitzer's identity. The underlying abstract algebraic structure is analysed in terms of complete filtered Rota-Baxter algebras.
引用
收藏
页码:11037 / 11052
页数:16
相关论文
共 34 条
[1]   Pre-Poisson algebras [J].
Aguiar, M .
LETTERS IN MATHEMATICAL PHYSICS, 2000, 54 (04) :263-277
[2]  
[Anonymous], B AM MATH SOC
[3]  
Atkinson FV., 1963, J MATH ANAL APPL, V7, P1
[4]  
Babelon O, 2003, INTRO CLASSICAL INTE
[5]  
Baxter G., 1960, PAC J MATH, V10, P731
[6]  
BERGBAUER C, 2004, HEPTH0403207
[7]   STRUCTURE OF FREE BAXTER ALGEBRAS [J].
CARTIER, P .
ADVANCES IN MATHEMATICS, 1972, 9 (02) :253-&
[8]   Renormalization in quantum field theory and the Riemann-Hilbert problem II:: The β-function, diffeomorphisms and the renormalization group [J].
Connes, A ;
Kreimer, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 216 (01) :215-241
[9]   Renormalization in quantum field theory and the Riemann-Hilbert problem I: The Hopf algebra structure of graphs and the main theorem [J].
Connes, A ;
Kreimer, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 210 (01) :249-273
[10]   Hopf algebras, renormalization and noncommutative geometry [J].
Connes, A ;
Kreimer, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 199 (01) :203-242