Metabolic engineering of Escherichia coli for higher alcohols production: An environmentally friendly alternative to fossil fuels

被引:16
|
作者
Goncalves, Ana L. [1 ]
Simoes, Manuel [1 ]
机构
[1] Univ Porto, Fac Engn, Dept Engn Quim, LEPABE, Rua Dr Roberto Frias, P-4200465 Oporto, Portugal
关键词
Biofuels; Escherichia coli; Fermentative pathway; Higher alcohols; Keto acid pathway; Metabolic engineering; ADVANCED BIOFUELS PRODUCTION; SYNTHETIC BIOLOGY; ISOBUTANOL TOLERANCE; GASOLINE COMPOSITION; 1-BUTANOL PRODUCTION; CELLULAR PHENOTYPE; EVOLUTION; MICROBES; BACTERIA; PATHWAYS;
D O I
10.1016/j.rser.2017.04.047
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The extensive use of fossil fuels has contributed to the scarcity of this energy source and to an increase of greenhouse gases emissions to the atmosphere contributing to the global warming phenomenon. To avoid the problems associated to fossil fuels, it becomes necessary to use cleaner and renewable energy sources. However, these new energy sources should compete with the prices of fossil fuels. In the last decades, several efforts have been conducted to produce chemical compounds that can replace fossil fuels using microorganisms. For that, these compounds, normally corresponding to higher alcohols or long-chain fatty acids, must have properties comparable to those of current transportation fuels. However, native organisms cannot synthesize these fuels in a cost-effective way. Owing to that, advances in metabolic engineering, as well as in synthetic and systems biology, appear as a viable alternative for the production of these compounds. Higher alcohols, such as 1-butanol, isobutanol, 2-methyl-1-butanol and 3-methyl-1-butanol, have shown to present comparable properties to those of gasoline, being, potential substitutes or additives for this petroleum-derived fuel. This review shows the recent developments in metabolic engineering of Escherichia coli for higher alcohols production and tolerance, emphasizing two different pathways: (i) the fermentative pathway, originally from microorganisms from the genera Clostridia; and (ii) the non-fermentative pathway, also known as the keto acid pathway. Engineering these synthetic pathways in heterologous organisms that are well-known and better suited for large-scale growth and industrial production, normally E. coli and Saccharomyces cerevisiae, can significantly improve, advanced biofuels production.
引用
收藏
页码:580 / 589
页数:10
相关论文
共 50 条
  • [21] Metabolic Engineering of Escherichia coli for Production of Valuable Compounds
    Nakashima, N.
    Tamura, T.
    JOURNAL OF BIOTECHNOLOGY, 2010, 150 : S409 - S409
  • [22] Metabolic Engineering of Microorganisms for the Production of Higher Alcohols
    Choi, Yong Jun
    Lee, Joungmin
    Jang, Yu-Sin
    Lee, Sang Yup
    MBIO, 2014, 5 (05):
  • [23] Metabolic engineering of Escherichia coli for the production of isobutanol: a review
    Pengfei Gu
    Liwen Liu
    Qianqian Ma
    Zilong Dong
    Qiang Wang
    Jie Xu
    Zhaosong Huang
    Qiang Li
    World Journal of Microbiology and Biotechnology, 2021, 37
  • [24] Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology
    James M. Clomburg
    Ramon Gonzalez
    Applied Microbiology and Biotechnology, 2010, 86 : 419 - 434
  • [25] Metabolic engineering of Escherichia coli for the production of succinic acid from glucose
    Skorokhodova, A. Yu.
    Gulevich, A. Yu.
    Morzhakova, A. A.
    Shakulov, R. S.
    Debabov, V. G.
    APPLIED BIOCHEMISTRY AND MICROBIOLOGY, 2013, 49 (07) : 629 - 637
  • [26] Metabolic engineering for improving ectoine production in Escherichia coli
    Li, Ying
    Zhang, Shuyan
    Li, Hedan
    Huang, Danyang
    Liu, Ziwei
    Gong, Dengke
    Wang, Yang
    Wang, Zhen
    Wang, Xiaoyuan
    SYSTEMS MICROBIOLOGY AND BIOMANUFACTURING, 2024, 4 (01): : 337 - 347
  • [27] Metabolic engineering of Escherichia coli for efficient ectoine production
    Zhang, Shuyan
    Fang, Yu
    Zhu, Lifei
    Li, Hedan
    Wang, Zhen
    Li, Ying
    Wang, Xiaoyuan
    SYSTEMS MICROBIOLOGY AND BIOMANUFACTURING, 2021, 1 (04): : 444 - 458
  • [28] Efficient production of phenyllactic acid in Escherichia coli via metabolic engineering and fermentation optimization strategies
    Wu, Weibin
    Chen, Maosen
    Li, Chenxi
    Zhong, Jie
    Xie, Rusheng
    Pan, Zhibin
    Lin, Junhan
    Qi, Feng
    FRONTIERS IN MICROBIOLOGY, 2024, 15
  • [29] Metabolic engineering of Escherichia coli for the production of cinnamaldehyde
    Hyun Bae Bang
    Yoon Hyeok Lee
    Sun Chang Kim
    Chang Keun Sung
    Ki Jun Jeong
    Microbial Cell Factories, 15
  • [30] Metabolic Engineering of Escherichia coli for Xylitol Production
    Li, Jiapeng
    Zhang, Lei
    Li, Changzheng
    He, Zhaoqing
    Yan, Xiongying
    Yang, Shihui
    FERMENTATION-BASEL, 2025, 11 (03):