In Situ Mechanistic Elucidation of Superior Si-C-Graphite Li-Ion Battery Anode Formation with Thermal Safety Aspects

被引:106
作者
Parekh, Mihit H. [1 ]
Sediako, Anton D. [2 ]
Naseri, Ali [2 ]
Thomson, Murray J. [2 ]
Pol, Vilas G. [1 ]
机构
[1] Purdue Univ, Davidson Sch Chem Engn, W Lafayette, IN 47907 USA
[2] Univ Toronto, Mech & Ind Engn, Toronto, ON M5S 3G8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
carbon; high capacity; in situ electron microscopy; lithium-ion batteries; silicon; CARBON-COATED SILICON; ELECTROCHEMICAL PERFORMANCE; COMPOSITE ANODE; K-ION; LITHIUM; ELECTROLYTE; STABILITY; INTERFACE; BEHAVIOR; RUNAWAY;
D O I
10.1002/aenm.201902799
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A composite anode material synthesized using silicon nanoparticles, micrometer sized graphite particles, and starch-derived amorphous carbon (GCSi) offers scalability and enhanced electrochemical performance when compared to existing graphite anodes. Mechanistic elucidation of the formation steps of tailored GCSi composite are achieved with environmental transmission electron microscopy (ETEM) and thermal safety aspects of the composite anode are studied for the first time using specially designed multimode calorimetry for coin cell studies. Electrochemical analysis of the composite anode demonstrates a high initial discharge capacity (1126 mAh g(-1)) and yields a high coulombic efficiency of 83% in the first charge cycle. Applying a current density of 500 mA g(-1), the anode composite retains 448 mAh g(-1) specific capacity after 100 cycles. Cycling stability is a result of improved interfacial binding made possible by the interconnected architecture of wheat derived amorphous carbon, enhancing the electrochemical kinetics and decreasing the inherent issues associated with volume expansion and pulverization of pristine Si electrodes. Comparing the energy released during thermal runaway, per specific capacity for the full-cell, the GCSi composite releases less heat than the conventional graphitic anode, suggesting a synergistic effect of each ingredient of the GCSi composite, providing a safer and higher performing anode.
引用
收藏
页数:12
相关论文
共 57 条
[11]   A new perspective on the formation and structure of the solid electrolyte interface at the graphite anode of Li-ion cells [J].
Ein-Eli, Y .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 1999, 2 (05) :212-214
[12]   Upcycling of Packing-Peanuts into Carbon Microsheet Anodes for Lithium-Ion Batteries [J].
Etacheri, Vinodkumar ;
Hong, Chulgi Nathan ;
Pol, Vilas G. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (18) :11191-11198
[13]   Facile Synthesis of Graphene Nanosheets via Fe Reduction of Exfoliated Graphite Oxide [J].
Fan, Zhuang-Jun ;
Kai, Wang ;
Yan, Jun ;
Wei, Tong ;
Zhi, Lin-Jie ;
Feng, Jing ;
Ren, Yue-ming ;
Song, Li-Ping ;
Wei, Fei .
ACS NANO, 2011, 5 (01) :191-198
[14]   Thermal behaviour of the lithiated-graphite/electrolyte interface through GC/MS analysis [J].
Gachot, Gregory ;
Grugeon, Sylvie ;
Eshetu, Gebrekidan Gebresilassie ;
Mathiron, David ;
Ribiere, Perrine ;
Armand, Michel ;
Laruelle, Stephane .
ELECTROCHIMICA ACTA, 2012, 83 :402-409
[15]   Si@void@C Nanofibers Fabricated Using a Self-Powered Electrospinning System for Lithium-Ion Batteries [J].
Han, Yu ;
Zou, Jingdian ;
Li, Zhen ;
Wang, Wenqiang ;
Jie, Yang ;
Ma, Jinming ;
Tang, Bin ;
Zhang, Qi ;
Cao, Xia ;
Xu, Shengming ;
Wang, Zhong Lin .
ACS NANO, 2018, 12 (05) :4835-4843
[16]   Electrochemical Evaluation and Phase-related Impedance Studies on Silicon-Few Layer Graphene (FLG) Composite Electrode Systems [J].
Huang, Qianye ;
Loveridge, Melanie J. ;
Genieser, Ronny ;
Lain, Michael J. ;
Bhagat, Rohit .
SCIENTIFIC REPORTS, 2018, 8
[17]   Challenges and Recent Progress in the Development of Si Anodes for Lithium-Ion Battery [J].
Jin, Yan ;
Zhu, Bin ;
Lu, Zhenda ;
Liu, Nian ;
Zhu, Jia .
ADVANCED ENERGY MATERIALS, 2017, 7 (23)
[18]   Green Synthesis of Graphene [J].
Kartick, B. ;
Srivastava, S. K. ;
Srivastava, I. .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2013, 13 (06) :4320-4324
[19]   Recent trends in carbon negative electrode materials [J].
Kasuh, T ;
Mabuchi, A ;
Tokumitsu, K ;
Fujimoto, H .
JOURNAL OF POWER SOURCES, 1997, 68 (01) :99-101
[20]  
Ko M, 2016, NAT ENERGY, V1, DOI [10.1038/NENERGY.2016.113, 10.1038/nenergy.2016.113]