Finding the fixed points of a Boolean network from a positive feedback vertex set

被引:6
作者
Aracena, Julio [1 ,2 ]
Cabrera-Crot, Luis [3 ,4 ]
Salinas, Lilian [3 ,4 ]
机构
[1] Univ Concepcion, Fac Ciencias Fis & Matemat, CI2MA, Concepcion, Chile
[2] Univ Concepcion, Fac Ciencias Fis & Matemat, Dept Ingn Matemat, Concepcion, Chile
[3] Univ Concepcion, Fac Ingn, Dept Ingn Informat & Cs Comp, Concepcion, Chile
[4] Univ Concepcion, Fac Ingn, CI2MA, Concepcion, Chile
关键词
SINGLETON ATTRACTOR; REDUCTION; CYCLES; NUMBER; STATES;
D O I
10.1093/bioinformatics/btaa922
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: In the modeling of biological systems by Boolean networks, a key problem is finding the set of fixed points of a given network. Some constructed algorithms consider certain structural properties of the regulatory graph like those proposed by Akutsu et al. and Zhang et al., which consider a feedback vertex set of the graph. However, these methods do not take into account the type of action (activation and inhibition) between its components. Results: In this article, we propose a new algorithm for finding the set of fixed points of a Boolean network, based on a positive feedback vertex set P of its regulatory graph and which works, by applying a sequential update schedule, in time O(2(vertical bar P vertical bar) center dot n(2+k)), where n is the number of components and the regulatory functions of the network can be evaluated in time O(n(k)), k >= 0. The theoretical foundation of this algorithm is due a nice characterization, that we give, of the dynamical behavior of the Boolean networks without positive cycles and with a fixed point.
引用
收藏
页码:1148 / 1155
页数:8
相关论文
共 47 条
[31]  
Robert F., 1986, Discrete Iterations: a Metric Study, V6
[32]   Permanents, Pfaffian orientations, and even directed circuits [J].
Robertson, N ;
Seymour, PD ;
Thomas, R .
ANNALS OF MATHEMATICS, 1999, 150 (03) :929-975
[33]  
Rolf D., 2006, J Satisfiability Boolean Modell Comput, V1, P111, DOI [10.3233/SAT190005, DOI 10.3233/SAT190005]
[34]   Dynamical and Structural Analysis of a T Cell Survival Network Identifies Novel Candidate Therapeutic Targets for Large Granular Lymphocyte Leukemia [J].
Saadatpour, Assieh ;
Wang, Rui-Sheng ;
Liao, Aijun ;
Liu, Xin ;
Loughran, Thomas P. ;
Albert, Istvan ;
Albert, Reka .
PLOS COMPUTATIONAL BIOLOGY, 2011, 7 (11)
[35]   A logical model provides insights into T cell receptor signaling [J].
Saez-Rodriguez, Julio ;
Simeoni, Luca ;
Lindquist, Jonathan A. ;
Hemenway, Rebecca ;
Bommhardt, Ursula ;
Arndt, Boerge ;
Haus, Utz-Uwe ;
Weismantel, Robert ;
Gilles, Ernst D. ;
Klamt, Steffen ;
Schraven, Burkhart .
PLOS COMPUTATIONAL BIOLOGY, 2007, 3 (08) :1580-1590
[36]   The Logic of EGFR/ErbB Signaling: Theoretical Properties and Analysis of High-Throughput Data [J].
Samaga, Regina ;
Saez-Rodriguez, Julio ;
Alexopoulos, Leonidas G. ;
Sorger, Peter K. ;
Klamt, Steffen .
PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (08)
[37]   Boolean approach to signalling pathway modelling in HGF-induced keratinocyte migration [J].
Singh, Amit ;
Nascimento, Juliana M. ;
Kowar, Silke ;
Busch, Hauke ;
Boerries, Melanie .
BIOINFORMATICS, 2012, 28 (18) :I495-I501
[38]   Algorithms for Singleton Attractor Detection in Planar and Nonplanar AND/OR Boolean Networks [J].
Tamura, Takeyuki ;
Akutsu, Tatsuya .
MATHEMATICS IN COMPUTER SCIENCE, 2009, 2 (03) :401-420
[39]   Detecting a Singleton Attractor in a Boolean Network Utilizing SAT Algorithms [J].
Tamura, Takeyuki ;
Akutsu, Tatsuya .
IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2009, E92A (02) :493-501
[40]   BOOLEAN FORMALIZATION OF GENETIC-CONTROL CIRCUITS [J].
THOMAS, R .
JOURNAL OF THEORETICAL BIOLOGY, 1973, 42 (03) :563-585