Trends and Challenges in Intelligent Condition Monitoring of Electrical Machines Using Machine Learning

被引:50
作者
Kudelina, Karolina [1 ]
Vaimann, Toomas [1 ]
Asad, Bilal [1 ]
Rassolkin, Anton [1 ]
Kallaste, Ants [1 ]
Demidova, Galina [1 ]
机构
[1] Tallinn Univ Technol, Dept Elect Power Engn & Mechatron, EE-19086 Tallinn, Estonia
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 06期
关键词
fault diagnostics; machine learning; artificial intelligence; pattern recognition; neural networks; BEARING FAULT-DIAGNOSIS; LOGISTIC-REGRESSION; INDUCTION-MOTOR; CLASSIFICATION; ALGORITHM; NETWORK; FRAMEWORK; SIGNALS;
D O I
10.3390/app11062761
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A review of the fault diagnostic techniques based on machine is presented in this paper. As the world is moving towards industry 4.0 standards, the problems of limited computational power and available memory are decreasing day by day. A significant amount of data with a variety of faulty conditions of electrical machines working under different environments can be handled remotely using cloud computation. Moreover, the mathematical models of electrical machines can be utilized for the training of AI algorithms. This is true because the collection of big data is a challenging task for the industry and laboratory because of related limited resources. In this paper, some promising machine learning-based diagnostic techniques are presented in the perspective of their attributes.
引用
收藏
页数:19
相关论文
共 99 条
[1]   Fault Detection and Classification Based on Co-training of Semisupervised Machine Learning [J].
Abdelgayed, Tamer S. ;
Morsi, Walid G. ;
Sidhu, Tarlochan S. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (02) :1595-1605
[2]   Review of optimization techniques applied for the integration of distributed generation from renewable energy sources [J].
Abdmouleh, Zeineb ;
Gastli, Adel ;
Ben-Brahim, Lazhar ;
Haouari, Mohamed ;
Al-Emadi, Nasser Ahmed .
RENEWABLE ENERGY, 2017, 113 :266-280
[3]  
Abraham A., 2006, STUD COMP INTELL, V26, P3
[4]  
Anderson R., 2012, P 2012 IEEE LONG ISL
[5]  
[Anonymous], 2013, THESIS TALLINN U TEC
[6]  
[Anonymous], 2006, IFAC PROC VOL, DOI DOI 10.3182/20060830-2-SF-4903.00037
[7]  
Aras F., 2014, P 2014 IEEE WORKSH E
[8]   The Cluster Computation-Based Hybrid FEM-Analytical Model of Induction Motor for Fault Diagnostics [J].
Asad, Bilal ;
Vaimann, Toomas ;
Belahcen, Anouar ;
Kallaste, Ants ;
Rassolkin, Anton ;
Iqbal, M. Naveed .
APPLIED SCIENCES-BASEL, 2020, 10 (21) :1-15
[9]   Modified winding function-based model of squirrel cage induction motor for fault diagnostics [J].
Asad, Bilal ;
Vaimann, Toomas ;
Belahcen, Anouar ;
Kallaste, Ants ;
Rassolkin, Anton ;
Iqbal, Muhammad Naveed .
IET ELECTRIC POWER APPLICATIONS, 2020, 14 (09) :1722-1734
[10]   Broken rotor bar fault detection of the grid and inverter-fed induction motor by effective attenuation of the fundamental component [J].
Asad, Bilal ;
Vaimann, Toomas ;
Belahcen, Anouar ;
Kallaste, Ants ;
Rassolkin, Anton ;
Iqbal, Muhammad Naveed .
IET ELECTRIC POWER APPLICATIONS, 2019, 13 (12) :2005-2014