Effect of deposition temperature on mechanical properties of nanotwinned Cu fabricated by rotary electroplating

被引:45
作者
Cheng, Hsiang-Yuan [1 ,2 ]
Dinh-Phuc Tran [1 ,2 ]
Tu, K. N. [3 ,4 ]
Chen, Chih [1 ,2 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan
[2] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan
[3] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[4] Natl Chiao Tung Univ, Int Coll Semicond Technol, Hsinchu 30010, Taiwan
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2021年 / 811卷
关键词
Columnar-slanted nanotwinned copper; Ultimate tensile strength; Microstructures; ION BATTERY ANODES; COPPER; DEFORMATION; ELECTRODEPOSITION; BEHAVIOR; SUBSTRATE; STRENGTH; ENERGY; FILMS;
D O I
10.1016/j.msea.2021.141065
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A rotary electroplating system was used to fabricate high-strength nanotwinned copper (nt-Cu) foils with slanted columnar grain structures, which may serve as the anode current collector in lithium ion batteries (LIBs). By controlling the temperature of electrolyte bath and current density during electroplating, it is possible to tune the nanotwinned microstructure to optimize mechanical properties of the electroplated nt-Cu foils. The ultimate tensile strength (UTS) of nt-Cu foils has been enhanced by 60% of the ordinary nt-Cu from 403 MPa to 637 MPa. We found that UTS of the electroplated nt-Cu foils increases with decreasing temperature of electrolyte bath. The tensile strength of the nt-Cu foils increases approximately by 10 MPa for 1 ?C decrease in the electrolyte temperature. The highest UTS of 637 MPa was obtained in rotary-electroplated at 6 ?C and a current density of 11
引用
收藏
页数:8
相关论文
共 44 条
[1]   Epitaxial nanotwinned Cu films with high strength and high conductivity [J].
Anderoglu, O. ;
Misra, A. ;
Wang, H. ;
Ronning, F. ;
Hundley, M. F. ;
Zhang, X. .
APPLIED PHYSICS LETTERS, 2008, 93 (08)
[2]  
[Anonymous], 2021, MAT SCI ENG A, V811
[3]   Effect of stacking fault energy on deformation behavior of cryo-rolled copper and copper alloys [J].
Bahmanpour, H. ;
Kauffmann, A. ;
Khoshkhoo, M. S. ;
Youssef, K. M. ;
Mula, S. ;
Freudenberger, J. ;
Eckert, J. ;
Scattergood, R. O. ;
Koch, C. C. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 529 :230-236
[4]   High capacity Li ion battery anodes using Ge nanowires [J].
Chan, Candace K. ;
Zhang, Xiao Feng ;
Cui, Yi .
NANO LETTERS, 2008, 8 (01) :307-309
[5]   Extra strengthening and work hardening in gradient nanotwinned metals [J].
Cheng, Zhao ;
Zhou, Haofei ;
Lu, Qiuhong ;
Gao, Huajian ;
Lu, Lei .
SCIENCE, 2018, 362 (6414) :559-+
[6]   The cathode-electrolyte interface in the Li-ion battery [J].
Edström, K ;
Gustafsson, T ;
Thomas, JO .
ELECTROCHIMICA ACTA, 2004, 50 (2-3) :397-403
[7]   Electrodeposition of selenium, indium and copper in an air- and water-stable ionic liquid at variable temperatures [J].
El Abedin, S. Zein ;
Saad, A. Y. ;
Farag, H. K. ;
Borisenko, N. ;
Liu, Q. X. ;
Endres, F. .
ELECTROCHIMICA ACTA, 2007, 52 (08) :2746-2754
[8]   Challenges in the development of advanced Li-ion batteries: a review [J].
Etacheri, Vinodkumar ;
Marom, Rotem ;
Elazari, Ran ;
Salitra, Gregory ;
Aurbach, Doron .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3243-3262
[9]   Electrochemical deposition of copper(I) oxide films [J].
Golden, TD ;
Shumsky, MG ;
Zhou, YC ;
VanderWerf, RA ;
VanLeeuwen, RA ;
Switzer, JA .
CHEMISTRY OF MATERIALS, 1996, 8 (10) :2499-2504
[10]   In situ methods for Li-ion battery research: A review of recent developments [J].
Harks, P. P. R. M. L. ;
Mulder, F. M. ;
Notten, P. H. L. .
JOURNAL OF POWER SOURCES, 2015, 288 :92-105