SpikingSIM: A Bio-Inspired Spiking Simulator

被引:6
作者
Zhao, Junwei [1 ]
Zhang, Shiliang [1 ]
Ma, Lei [1 ,2 ]
Yu, Zhaofei [1 ]
Huang, Tiejun [1 ,2 ]
机构
[1] Peking Univ, Inst Digital Media, Beijing, Peoples R China
[2] Beijing Acad Artificial Intelligence, Beijing, Peoples R China
来源
2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22) | 2022年
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Bio-inspired Camera; Simulation; Neuromorphic Computing; Classification;
D O I
10.1109/ISCAS48785.2022.9937811
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Large-scale neuromorphic dataset is costly to construct and difficult to annotate because of the unique high-speed asynchronous imaging principle of bio-inspired cameras. Lacking of large-scale annotated neuromorphic datasets has significantly hindered the applications of bio-inspired cameras in deep neural networks. Synthesizing neuromorphic data from annotated RGB images can be considered to alleviate this challenge. This paper proposes a simulator to generate simulated spiking data from images recorded by frame cameras. To minimize the deviations between synthetic data and real data, the proposed simulator named SpikingSIM considers the sensing principle of spiking cameras, and generates high-quality simulated spiking data, e.g., the noises in real data are also simulated. Experimental results show that, our simulator generates more realistic spiking data than existing methods. We hence train deep neural networks with synthesized spiking data. Experiments show that, the network trained by our simulated data generalizes well on real spiking data. The source code of SpikingSIM is available at http://github.com/Evin-X/SpikingSIM.
引用
收藏
页码:3003 / 3007
页数:5
相关论文
共 32 条
[1]   Distance Surface for Event-Based Optical Flow [J].
Almatrafi, Mohammed ;
Baldwin, Raymond ;
Aizawa, Kiyoharu ;
Hirakawa, Keigo .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (07) :1547-1556
[2]  
Aung M, 2018, IEEE CONF COMPU INTE, P117
[3]  
Delbrück T, 2010, IEEE INT SYMP CIRC S, P2426, DOI 10.1109/ISCAS.2010.5537149
[4]   Spike Camera and Its Coding Methods [J].
Dong, Siwei ;
Huang, Tiejun ;
Tian, Yonghong .
2017 DATA COMPRESSION CONFERENCE (DCC), 2017, :437-437
[5]  
Dosovitskiy Alexey, 2017, PMLR, P1
[6]   Event-Based Vision: A Survey [J].
Gallego, Guillermo ;
Delbruck, Tobi ;
Orchard, Garrick Michael ;
Bartolozzi, Chiara ;
Taba, Brian ;
Censi, Andrea ;
Leutenegger, Stefan ;
Davison, Andrew ;
Conradt, Jorg ;
Daniilidis, Kostas ;
Scaramuzza, Davide .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (01) :154-180
[7]   Video to Events: Recycling Video Datasets for Event Cameras [J].
Gehrig, Daniel ;
Gehrig, Mathias ;
Hidalgo-Carrio, Javier ;
Scaramuzza, Davide .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :3583-3592
[8]  
Gehrig D, 2020, INT J COMPUT VISION, V128, P601, DOI 10.1007/s11263-019-01209-w
[9]   Neuromorphic Camera Guided High Dynamic Range Imaging [J].
Han, Jin ;
Zhou, Chu ;
Duan, Peiqi ;
Tang, Yehui ;
Xu, Chang ;
Xu, Chao ;
Huang, Tiejun ;
Shi, Boxin .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :1727-1736
[10]  
Hasinoff Samuel W, 2014, Photon, Poisson Noise, P608, DOI 10.1007/978-0-387-31439-6-482