Occupation times of Levy-driven Ornstein-Uhlenbeck processes with two-sided exponential jumps and applications

被引:7
作者
Zhou, Jiang [1 ]
Wu, Lan [1 ]
Bai, Yang [1 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
关键词
Ornstein-Uhlenbeck process; Occupation times; Exit problem; DIFFUSION-PROCESSES; EXIT TIMES;
D O I
10.1016/j.spl.2017.01.021
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For an Ornstein-Uhlenbeck process driven by a double exponential jump diffusion process, we obtain formulas for the joint Laplace transform of it and its occupation times. The approach used is new and can be extended to investigate the occupation times of an Ornstein-Uhlenbeck process driven by a more general Levy process. Besides, some applications to price occupation-time options are presented. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:80 / 90
页数:11
相关论文
共 16 条
[1]  
[Anonymous], 2002, HDB BROWNIAN MOTION, DOI DOI 10.1007/978-3-0348-8163-0
[2]   On exit times of Levy-driven Ornstein-Uhlenbeck processes [J].
Borovkov, Konstantin ;
Novikov, Alexander .
STATISTICS & PROBABILITY LETTERS, 2008, 78 (12) :1517-1525
[3]   Occupation Times of Jump-Diffusion Processes with Double Exponential Jumps and the Pricing of Options [J].
Cai, Ning ;
Chen, Nan ;
Wan, Xiangwei .
MATHEMATICS OF OPERATIONS RESEARCH, 2010, 35 (02) :412-437
[4]   PRICING STEP OPTIONS UNDER THE CEV AND OTHER SOLVABLE DIFFUSION MODELS [J].
Campolieti, G. ;
Makarov, R. ;
Wouterloot, K. .
INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2013, 16 (05)
[5]   THE DISTRIBUTION OF THE QUANTILE OF A BROWNIAN MOTION WITH DRIFT AND THE PRICING OF RELATED PATH-DEPENDENT OPTIONS [J].
Dassios, Angelos .
ANNALS OF APPLIED PROBABILITY, 1995, 5 (02) :389-398
[6]  
Fusai G, 2000, ANN APPL PROBAB, V10, P634
[7]  
FUSAI G, 2001, J COMPUT FINANC, V5, P1
[8]   Exit times for a class of piecewise exponential Markov processes with two-sided jumps [J].
Jacobsen, Martin ;
Jensen, Anders Tolver .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2007, 117 (09) :1330-1356
[9]   First passage times of a jump diffusion process [J].
Kou, SG ;
Wang, H .
ADVANCES IN APPLIED PROBABILITY, 2003, 35 (02) :504-531
[10]  
Li B, 2013, ADV APPL PROBAB, V45, P1049