Multi-task Learning for Gender and Age Prediction on Chinese Microblog

被引:5
|
作者
Wang, Liang [1 ]
Li, Qi [1 ]
Chen, Xuan [2 ]
Li, Sujian [1 ,3 ]
机构
[1] Peking Univ, Key Lab Computat Linguist, MOE, Beijing, Peoples R China
[2] Shandong Univ Polit Sci & Law, Sch Informat, Jinan, Peoples R China
[3] Collaborat Innovat Ctr Language Abil, Xuzhou, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-task learning; Social media; Neural network;
D O I
10.1007/978-3-319-50496-4_16
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The demographic attributes gender and age play an important role for social media applications. Previous studies on gender and age prediction mostly explore efficient features which are labor intensive. In this paper, we propose to use the multi-task convolutional neural network (MTCNN) model for predicting gender and age simultaneously on Chinese microblog. With MTCNN, we can effectively reduce the burden of feature engineering and explore common and unique representations for both tasks. Experimental results show that our method can significantly outperform the state-of-the-art baselines.
引用
收藏
页码:189 / 200
页数:12
相关论文
共 50 条
  • [31] Development of Multi-task Models for Emotion-Aware Gender Prediction
    Suman, Chanchal
    Singh, Abhishek
    Saha, Sriparna
    Bhattacharyya, Pushpak
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [32] Bayesian Multi-task Learning for Dynamic Time Series Prediction
    Chandra, Rohitash
    Cripps, Sally
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018, : 390 - 397
  • [33] A MULTI-TASK LEARNING METHOD COMBINED WITH GAN FOR AERODYNAMIC PREDICTION
    Zhang Guangbo
    Hu Liwei
    Zhang Jun
    Xiang Yu
    2022 19TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2022,
  • [34] Conversion Prediction with Delayed Feedback: A Multi-task Learning Approach
    Hou, Yilin
    Zhao, Guangming
    Liu, Chuanren
    Zu, Zhonglin
    Zhu, Xiaoqiang
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2021), 2021, : 191 - 199
  • [35] Spatiotemporal Multi-task Learning for Citywide Passenger Flow Prediction
    Zhong, Runxing
    Lv, Weifeng
    Du, Bowen
    Lei, Shuo
    Huang, Runhe
    2017 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTED, SCALABLE COMPUTING & COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF PEOPLE AND SMART CITY INNOVATION (SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI), 2017,
  • [36] A MIMO Channel Prediction Scheme Based on Multi-Task Learning
    Li, Jing
    Sun, DeChun
    Liu, ZuJun
    WIRELESS PERSONAL COMMUNICATIONS, 2020, 115 (03) : 1869 - 1880
  • [37] Hierarchical Multi-Task Word Embedding Learning for Synonym Prediction
    Fei, Hongliang
    Tan, Shulong
    Li, Ping
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 834 - 842
  • [38] Disease outbreak prediction by data integration and multi-task learning
    Bardak, Batuhan
    Tan, Mehmet
    2017 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (CIBCB), 2017, : 204 - 210
  • [39] Traffic Prediction With Missing Data: A Multi-Task Learning Approach
    Wang, Ao
    Ye, Yongchao
    Song, Xiaozhuang
    Zhang, Shiyao
    Yu, James J. Q.
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (04) : 4189 - 4202
  • [40] Deep Multi-Task Learning for Joint Localization, Perception, and Prediction
    Phillips, John
    Martinez, Julieta
    Barsan, Ioan Andrei
    Casas, Sergio
    Sadat, Abbas
    Urtasun, Raquel
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 4677 - 4687