Multi-task Learning for Gender and Age Prediction on Chinese Microblog

被引:5
|
作者
Wang, Liang [1 ]
Li, Qi [1 ]
Chen, Xuan [2 ]
Li, Sujian [1 ,3 ]
机构
[1] Peking Univ, Key Lab Computat Linguist, MOE, Beijing, Peoples R China
[2] Shandong Univ Polit Sci & Law, Sch Informat, Jinan, Peoples R China
[3] Collaborat Innovat Ctr Language Abil, Xuzhou, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-task learning; Social media; Neural network;
D O I
10.1007/978-3-319-50496-4_16
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The demographic attributes gender and age play an important role for social media applications. Previous studies on gender and age prediction mostly explore efficient features which are labor intensive. In this paper, we propose to use the multi-task convolutional neural network (MTCNN) model for predicting gender and age simultaneously on Chinese microblog. With MTCNN, we can effectively reduce the burden of feature engineering and explore common and unique representations for both tasks. Experimental results show that our method can significantly outperform the state-of-the-art baselines.
引用
收藏
页码:189 / 200
页数:12
相关论文
共 50 条
  • [11] Multi-task gradient descent for multi-task learning
    Lu Bai
    Yew-Soon Ong
    Tiantian He
    Abhishek Gupta
    Memetic Computing, 2020, 12 : 355 - 369
  • [12] Multi-task gradient descent for multi-task learning
    Bai, Lu
    Ong, Yew-Soon
    He, Tiantian
    Gupta, Abhishek
    MEMETIC COMPUTING, 2020, 12 (04) : 355 - 369
  • [13] Collaborative community-specific microblog sentiment analysis via multi-task learning
    Zou Xiaomei
    Yang Jing
    Zhang Wei
    Han Hongyu
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 169
  • [14] Face Gender and Age Classification Based on Multi-Task, Multi-Instance and Multi-Scale Learning
    Liao, Haibin
    Yuan, Li
    Wu, Mou
    Zhong, Liangji
    Jin, Guonian
    Xiong, Neal
    APPLIED SCIENCES-BASEL, 2022, 12 (23):
  • [15] Structured Multi-task Learning for Molecular Property Prediction
    Liu, Shengchao
    Qu, Meng
    Zhang, Zuobai
    Cai, Huiyu
    Tang, Jian
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [16] Water Quality Prediction Based on Multi-Task Learning
    Wu, Huan
    Cheng, Shuiping
    Xin, Kunlun
    Ma, Nian
    Chen, Jie
    Tao, Liang
    Gao, Min
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (15)
  • [17] Multi-Task Learning for Dense Prediction Tasks: A Survey
    Vandenhende, Simon
    Georgoulis, Stamatios
    Van Gansbeke, Wouter
    Proesmans, Marc
    Dai, Dengxin
    Van Gool, Luc
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (07) : 3614 - 3633
  • [18] Enhancement of acute toxicity prediction by multi-task learning
    Sosnin, Sergey
    Karlov, Dmitry
    Tetko, Igor
    Fedorov, Maxim
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [19] Multi-Task Learning with Knowledge Distillation for Dense Prediction
    Xu, Yangyang
    Yang, Yibo
    Zhang, Lefei
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 21493 - 21502
  • [20] Situation Aware Multi-Task Learning for Traffic Prediction
    Deng, Dingxiong
    Shahabi, Cyrus
    Demiryurek, Ugur
    Zhu, Linhong
    2017 17TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2017, : 81 - 90