Multi-task Learning for Gender and Age Prediction on Chinese Microblog

被引:5
作者
Wang, Liang [1 ]
Li, Qi [1 ]
Chen, Xuan [2 ]
Li, Sujian [1 ,3 ]
机构
[1] Peking Univ, Key Lab Computat Linguist, MOE, Beijing, Peoples R China
[2] Shandong Univ Polit Sci & Law, Sch Informat, Jinan, Peoples R China
[3] Collaborat Innovat Ctr Language Abil, Xuzhou, Jiangsu, Peoples R China
来源
NATURAL LANGUAGE UNDERSTANDING AND INTELLIGENT APPLICATIONS (NLPCC 2016) | 2016年 / 10102卷
基金
中国国家自然科学基金;
关键词
Multi-task learning; Social media; Neural network;
D O I
10.1007/978-3-319-50496-4_16
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The demographic attributes gender and age play an important role for social media applications. Previous studies on gender and age prediction mostly explore efficient features which are labor intensive. In this paper, we propose to use the multi-task convolutional neural network (MTCNN) model for predicting gender and age simultaneously on Chinese microblog. With MTCNN, we can effectively reduce the burden of feature engineering and explore common and unique representations for both tasks. Experimental results show that our method can significantly outperform the state-of-the-art baselines.
引用
收藏
页码:189 / 200
页数:12
相关论文
共 22 条
  • [1] Alowibdi Jalal S., 2013, 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), P739
  • [2] [Anonymous], 2010, P PYTH SCI C
  • [3] [Anonymous], 2011, P 15 C COMP NAT LANG
  • [4] Gender identity and lexical variation in social media
    Bamman, David
    Eisenstein, Jacob
    Schnoebelen, Tyler
    [J]. JOURNAL OF SOCIOLINGUISTICS, 2014, 18 (02) : 135 - 160
  • [5] Burger J.D, 2011, P 2011 C EMPIRICAL M, P1301, DOI DOI 10.1007/S00256-005-0933-8
  • [6] Multitask learning
    Caruana, R
    [J]. MACHINE LEARNING, 1997, 28 (01) : 41 - 75
  • [7] Ciot Morgane, 2013, Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, P1136
  • [8] Collobert R., 2008, P 25 ICML, P160, DOI [10.1145/1390156.1390177, DOI 10.1145/1390156.1390177]
  • [9] Culotta A, 2015, AAAI CONF ARTIF INTE, P72
  • [10] Dong N., 2011, P 5 ACL HLT WORKSH L, P115