LEAST ENERGY SIGN-CHANGING SOLUTIONS FOR SUPER-QUADRATIC SCHRODINGER-POISSON SYSTEMS IN R3

被引:0
作者
Khoutir, Sofiane [1 ]
机构
[1] Univ Sci & Technol Houari Boumediene, Fac Math, PB 32 El Alia, Algiers 16111, Algeria
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2021年 / 11卷 / 03期
关键词
Schrodinger-Poisson system; sing-changing solution; ground state solution; POSITIVE SOLUTIONS; GROUND-STATE; STANDING WAVES; EXISTENCE; MULTIPLICITY; MAXWELL; EQUATIONS; STABILITY; BEHAVIOR;
D O I
10.11948/20200274
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following Schrodinger-Poisson systems {-Delta u + Vu + lambda phi u = f(u), x is an element of R-3, -Delta phi = u(2), x is an element of R-3, where V, lambda > 0 and f is an element of C (R, R). Under some relaxed assumptions on f, using variational methods in combination with the Pohozaev identity, we prove that the above system possesses a least energy sign-changing solution and a ground state solution provided that lambda is sufficiently small. Moreover, we prove that the energy of a sign-changing solution is strictly larger than that of the ground state solution. Our results generalize and extend some recent results in the literature.
引用
收藏
页码:1520 / 1534
页数:15
相关论文
共 30 条
[1]   A SIGN-CHANGING SOLUTION FOR THE SCHRODINGER-POISSON EQUATION IN R3 [J].
Alves, Claudianor O. ;
Souto, Marco A. S. ;
Soares, Sergio H. M. .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2017, 47 (01) :1-25
[2]   Multiple bound states for the Schrodinger-Poisson problem [J].
Ambrosetti, Antonio ;
Ruiz, David .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (03) :391-404
[3]  
[Anonymous], 1997, Minimax theorems
[4]   On the Schrodinger-Maxwell equations under the effect of a general nonlinear term [J].
Azzollini, A. ;
d'Avenia, P. ;
Pomponio, A. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (02) :779-791
[5]  
Benci V., 1998, Topol Methods Nonlinear Anal, V11, P283, DOI DOI 10.12775/TMNA.1998.019
[6]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[7]   Positive solutions for some non-autonomous Schrodinger-Poisson systems [J].
Cerami, Giovanna ;
Vaira, Giusi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (03) :521-543
[8]  
Chen ST, 2016, Z ANGEW MATH PHYS, V67, DOI 10.1007/s00033-016-0695-2
[9]   Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrodinger-Maxwell equations [J].
D'Aprile, T ;
Mugnai, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2004, 134 :893-906
[10]  
De Figueiredo D. G, 1989, Lectures on the Ekeland Variational Principle with Applications and Detours, V81