POISSON IMAGE DENOISING BASED ON FRACTIONAL-ORDER TOTAL VARIATION

被引:48
|
作者
Chowdhury, Mujibur Rahman [1 ]
Zhang, Jun [2 ]
Qin, Jing [3 ]
Lou, Yifei [1 ]
机构
[1] Univ Texas Dallas, Dept Math Sci, Richardson, TX 75080 USA
[2] Nanchang Inst Technol, Coll Sci, Jiangxi Prov Key Lab Water Informat Cooperat Sens, Nanchang 330099, Jiangxi, Peoples R China
[3] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
关键词
Poisson noise; expectation-maximization; fractional-order total variation; AUGMENTED LAGRANGIAN METHOD; TOTAL VARIATION MINIMIZATION; NOISE REMOVAL; FAST ALGORITHM; RESTORATION; TEXTURE; MODEL; DECOMPOSITION; TV;
D O I
10.3934/ipi.2019064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Poisson noise is an important type of electronic noise that is present in a variety of photon-limited imaging systems. Different from the Gaussian noise, Poisson noise depends on the image intensity, which makes image restoration very challenging. Moreover, complex geometry of images desires a regularization that is capable of preserving piecewise smoothness. In this paper, we propose a Poisson denoising model based on the fractional-order total variation (FOTV). The existence and uniqueness of a solution to the model are established. To solve the problem efficiently, we propose three numerical algorithms based on the Chambolle-Pock primal-dual method, a forward-backward splitting scheme, and the alternating direction method of multipliers (ADMM), each with guaranteed convergence. Various experimental results are provided to demonstrate the effectiveness and efficiency of our proposed methods over the state-of-the-art in Poisson denoising.
引用
收藏
页码:77 / 96
页数:20
相关论文
共 50 条
  • [1] Fractional-order iterative regularization method for total variation based image denoising
    Zhang, Jun
    Wei, Zhihui
    Xiao, Liang
    JOURNAL OF ELECTRONIC IMAGING, 2012, 21 (04)
  • [2] A Hybrid Image Denoising Method Based on Integer and Fractional-Order Total Variation
    Kazemi Golbaghi, Fariba
    Rezghi, Mansoor
    Eslahchi, M. R.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2020, 44 (06): : 1803 - 1814
  • [3] Fractional-order total variation image denoising based on proximity algorithm
    Chen, Dali
    Chen, YangQuan
    Xue, Dingyu
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 : 537 - 545
  • [4] Vector total fractional-order variation and its applications for color image denoising and decomposition
    Wang, Wei
    Xia, Xiang-Gen
    Zhang, Shengli
    He, Chuanjiang
    Chen, Ling
    APPLIED MATHEMATICAL MODELLING, 2019, 72 : 155 - 175
  • [5] Image denoising based on the fractional-order total variation and the minimax-concave
    Xiaohui Chen
    Ping Zhao
    Signal, Image and Video Processing, 2024, 18 : 1601 - 1608
  • [6] Image denoising based on the fractional-order total variation and the minimax-concave
    Chen, Xiaohui
    Zhao, Ping
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (02) : 1601 - 1608
  • [7] Robust Kronecker product video denoising based on fractional-order total variation model
    Chen, Gao
    Zhang, Jiashu
    Li, Defang
    Chen, Huaixin
    SIGNAL PROCESSING, 2016, 119 : 1 - 20
  • [8] A Variational Framework for Image Denoising Based on Fractional-order Derivatives
    Dong, Fangfang
    2013 NINTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2013, : 1283 - 1288
  • [9] Total Fractional-Order Variation-Based Constraint Image Deblurring Problem
    Saleem, Shahid
    Ahmad, Shahbaz
    Kim, Junseok
    MATHEMATICS, 2023, 11 (13)
  • [10] Primal-dual hybrid gradient image denoising algorithm based on overlapping group sparsity and fractional-order total variation
    Bi, Shaojiu
    Li, Minmin
    Cai, Guangcheng
    APPLIED MATHEMATICAL MODELLING, 2024, 135 : 666 - 683