Periodic solutions of a resonant third-order equation

被引:10
作者
Amster, P
De Nápoli, P
Mariani, MC
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, RA-1917 Buenos Aires, DF, Argentina
[3] New Mexico State Univ, Dept Math Sci, Las Cruces, NM 88003 USA
关键词
resonant equations; periodic conditions; coincidence degree;
D O I
10.1016/j.na.2003.03.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence of periodic solutions for a third-order equation of resonant type. Under suitable conditions we prove the existence of at least one periodic solution of the problem applying Mawhin coincidence degree theory. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:399 / 410
页数:12
相关论文
共 10 条
[1]  
EZEILO J, 1989, J MATH ANAL APPL, V143, P56
[2]   RESONANT AND NONRESONANT OSCILLATIONS FOR SOME 3RD ORDER NONLINEAR ORDINARY DIFFERENTIAL-EQUATIONS [J].
EZEILO, JOC ;
NKASHAMA, MN .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1988, 12 (10) :1029-1046
[3]  
FANG H, 2001, APPL MATH E NOTES, V1, P77
[4]  
Gaines R.E., 1997, LECT NOTES MATH, V586
[5]  
Iyase S., 1999, MATH P ROYAL IRISH A, V99A, P113
[6]  
Lazer A. C., 2000, ELECT J DIFF EQNS C, V05, P113
[7]  
Mawhin J., 2000, B SOC ESPANOLA MATEM, V16, P45
[8]  
MAWHIN J, 1979, NSF CBMS REG C MATH, V40
[9]  
MINHOS F, 1998, PORTUGAL MATH, V55
[10]   Periodic solutions of forced oscillators with several degrees of freedom [J].
Ortega, R ;
Sánchez, LA .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2002, 34 :308-318