Solving linear and bilinear problems with interval uncertainty

被引:0
作者
Latipova, A. T. [1 ]
机构
[1] South Ural State Univ, 76 Lenin Ave, Chelyabinsk 454080, Russia
来源
INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING (ICIE-2015) | 2015年 / 129卷
关键词
Operational research; interval analysis; programming; bilinear problem;
D O I
10.1016/j.proeng.2015.12.089
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Two kinds of optimization problems, which can be used in production planning, have been considered: interval linear programming (ILP), finding equilibrium position interval for the Von Neumann model (bilinear problem). Initial data for these models commonly have interval uncertainty. The paper presents definitions of different solution types and methods for finding these solutions. These methods imply reducing interval optimization problems to exact ordinary linear programming problems. (C) 2015 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:670 / 675
页数:6
相关论文
共 8 条
[1]  
[Anonymous], 2001, Applied Interval Analysis, DOI DOI 10.1007/978-1-4471-0249-6
[2]  
Ashmanov SA., 1984, Introduction to Mathematical Economics
[3]  
Cormen T.H., 2009, Introduction to Algorithms, V3rd ed., DOI [10.2307/2583667, DOI 10.2307/2583667]
[4]  
Fiedler M., 2006, Linear optimization problems with inexact data
[5]  
Panyukov A. V., 2008, CONTROL COMPUTER ENG, V2, P150
[6]  
Panyukov A. V., 2012, P INT C PAR COMP I C, V2, P155
[7]  
Panyukov A. V., 2012, P 14 IFAC S INF CONT, V14, P1470
[8]  
Panyukov A. V., 2008, COMP MATH MATH PHYS, V14, P1999