Toward the Automatic Quantification of In Utero Brain Development in 3D Structural MRI: A Review

被引:31
作者
Benkarim, Oualid M. [1 ]
Sanroma, Gerard [1 ]
Zimmer, Veronika A. [1 ]
Munoz-Moreno, Emma [2 ,3 ,4 ]
Hahner, Nadine [2 ,3 ]
Eixarch, Elisenda [2 ,3 ]
Camara, Oscar [1 ]
Gonzalez Ballester, Miguel Angel [1 ,5 ]
Piella, Gemma [1 ]
机构
[1] Univ Pompeu Fabra, DTIC, Tanger 122-140, Barcelona 08018, Spain
[2] Univ Barcelona, Fetal Fetal Med Res Ctr i D, BCNatal Barcelona Ctr Maternal Fetal & Neonatal M, Hosp Clin, Barcelona, Spain
[3] Univ Barcelona, IDIBAPS, Hosp St Joan Deu, Barcelona, Spain
[4] IDIBAPS, Inst Invest Biomed August Pi i Sunyer, Expt 7T MRI Unit, Barcelona, Spain
[5] ICREA, Barcelona, Spain
关键词
quantitative MRI; fetal brain; spatiotemporal atlas; segmentation; growth pattern; volumetry; gyrification; ventriculomegaly; FETAL-BRAIN; VOLUME RECONSTRUCTION; SPATIAL NORMALIZATION; SPATIOTEMPORAL ATLAS; CORTICAL DEVELOPMENT; FOLDING PATTERNS; CEREBRAL-CORTEX; TERM-BORN; SEGMENTATION; GROWTH;
D O I
10.1002/hbm.23536
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Investigating the human brain in utero is important for researchers and clinicians seeking to understand early neurodevelopmental processes. With the advent of fast magnetic resonance imaging (MRI) techniques and the development of motion correction algorithms to obtain high-quality 3D images of the fetal brain, it is now possible to gain more insight into the ongoing maturational processes in the brain. In this article, we present a review of the major building blocks of the pipeline toward performing quantitative analysis of in vivo MRI of the developing brain and its potential applications in clinical settings. The review focuses on T1- and T2-weighted modalities, and covers state of the art methodologies involved in each step of the pipeline, in particular, 3D volume reconstruction, spatiotemporal modeling of the developing brain, segmentation, quantification techniques, and clinical applications. (C) 2017 Wiley Periodicals, Inc.
引用
收藏
页码:2772 / 2787
页数:16
相关论文
共 50 条
[31]   Volumetric Segmentation of Key Fetal Brain Structures in 3D Ultrasound [J].
Yaqub, Mohammad ;
Cuingnet, Remi ;
Napolitano, Raffaele ;
Roundhill, David ;
Papageorghiou, Aris ;
Ardon, Roberto ;
Noble, J. Alison .
MACHINE LEARNING IN MEDICAL IMAGING (MLMI 2013), 2013, 8184 :25-32
[32]   Multimodal MRI Brain Tumor Segmentation using 3D and 3D/2D Methods: A Study on the MICCAI BRATS Dataset [J].
Gtifa, Wafa ;
Khoja, Intissar ;
Sakly, Anis .
2024 IEEE INTERNATIONAL CONFERENCE ON ADVANCED SYSTEMS AND EMERGENT TECHNOLOGIES, ICASET 2024, 2024,
[33]   Quantitative MRI measurements of human fetal brain development in utero [J].
Grossman, Rachel ;
Hoffman, Chen ;
Mardor, Yael ;
Biegon, Anat .
NEUROIMAGE, 2006, 33 (02) :463-470
[34]   A Comparative Study of Automatic Localization Algorithms for Spherical Markers within 3D MRI Data [J].
Fiedler, Christian ;
Jacobs, Paul-Philipp ;
Mueller, Marcel ;
Kolbig, Silke ;
Grunert, Ronny ;
Meixensberger, Jurgen ;
Winkler, Dirk .
BRAIN SCIENCES, 2021, 11 (07)
[35]   Automatic Generation of Structural Building Descriptions from 3D Point Cloud Scans [J].
Ochmann, Sebastian ;
Vock, Richard ;
Wessel, Raoul ;
Tamke, Martin ;
Klein, Reinhard .
2014 PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON COMPUTER GRAPHICS THEORY AND APPLICATIONS (GRAPP 2014), 2014, :120-127
[36]   Subcortical segmentation of the fetal brain in 3D ultrasound using deep learning [J].
Hesse, Linde S. ;
Aliasi, Moska ;
Moser, Felipe ;
Haak, Monique C. ;
Xie, Weidi ;
Jenkinson, Mark ;
Namburete, Ana I. L. .
NEUROIMAGE, 2022, 254
[37]   Segmentation of 3D MRI Using 2D Convolutional Neural Networks in Infants' Brain [J].
Karimi, Hamed ;
Hamghalam, Mohammad .
MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (11) :33511-33526
[38]   Segmentation of 3D MRI Using 2D Convolutional Neural Networks in Infants’ Brain [J].
Hamed Karimi ;
Mohammad Hamghalam .
Multimedia Tools and Applications, 2024, 83 :33511-33526
[39]   2.5D and 3D segmentation of brain metastases with deep learning on multinational MRI data [J].
Ottesen, Jon Andre ;
Yi, Darvin ;
Tong, Elizabeth ;
Iv, Michael ;
Latysheva, Anna ;
Saxhaug, Cathrine ;
Jacobsen, Kari Dolven ;
Helland, Aslaug ;
Emblem, Kyrre Eeg ;
Rubin, Daniel L. ;
Bjornerud, Atle ;
Zaharchuk, Greg ;
Grovik, Endre .
FRONTIERS IN NEUROINFORMATICS, 2023, 16
[40]   Deep MRI brain extraction: A 3D convolutional neural network for skull stripping [J].
Kleesiek, Jens ;
Urban, Gregor ;
Hubert, Alexander ;
Schwarz, Daniel ;
Maier-Hein, Klaus ;
Bendszus, Martin ;
Biller, Armin .
NEUROIMAGE, 2016, 129 :460-469