Toward the Automatic Quantification of In Utero Brain Development in 3D Structural MRI: A Review

被引:30
作者
Benkarim, Oualid M. [1 ]
Sanroma, Gerard [1 ]
Zimmer, Veronika A. [1 ]
Munoz-Moreno, Emma [2 ,3 ,4 ]
Hahner, Nadine [2 ,3 ]
Eixarch, Elisenda [2 ,3 ]
Camara, Oscar [1 ]
Gonzalez Ballester, Miguel Angel [1 ,5 ]
Piella, Gemma [1 ]
机构
[1] Univ Pompeu Fabra, DTIC, Tanger 122-140, Barcelona 08018, Spain
[2] Univ Barcelona, Fetal Fetal Med Res Ctr i D, BCNatal Barcelona Ctr Maternal Fetal & Neonatal M, Hosp Clin, Barcelona, Spain
[3] Univ Barcelona, IDIBAPS, Hosp St Joan Deu, Barcelona, Spain
[4] IDIBAPS, Inst Invest Biomed August Pi i Sunyer, Expt 7T MRI Unit, Barcelona, Spain
[5] ICREA, Barcelona, Spain
关键词
quantitative MRI; fetal brain; spatiotemporal atlas; segmentation; growth pattern; volumetry; gyrification; ventriculomegaly; FETAL-BRAIN; VOLUME RECONSTRUCTION; SPATIAL NORMALIZATION; SPATIOTEMPORAL ATLAS; CORTICAL DEVELOPMENT; FOLDING PATTERNS; CEREBRAL-CORTEX; TERM-BORN; SEGMENTATION; GROWTH;
D O I
10.1002/hbm.23536
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Investigating the human brain in utero is important for researchers and clinicians seeking to understand early neurodevelopmental processes. With the advent of fast magnetic resonance imaging (MRI) techniques and the development of motion correction algorithms to obtain high-quality 3D images of the fetal brain, it is now possible to gain more insight into the ongoing maturational processes in the brain. In this article, we present a review of the major building blocks of the pipeline toward performing quantitative analysis of in vivo MRI of the developing brain and its potential applications in clinical settings. The review focuses on T1- and T2-weighted modalities, and covers state of the art methodologies involved in each step of the pipeline, in particular, 3D volume reconstruction, spatiotemporal modeling of the developing brain, segmentation, quantification techniques, and clinical applications. (C) 2017 Wiley Periodicals, Inc.
引用
收藏
页码:2772 / 2787
页数:16
相关论文
共 50 条
  • [21] Fully Automatic 3D Glioma Extraction in Multi-contrast MRI
    Dvorak, Pavel
    Bartusek, Karel
    IMAGE ANALYSIS AND RECOGNITION, ICIAR 2014, PT II, 2014, 8815 : 239 - 246
  • [22] Automatic Segmentation of Neurons in 3D Samples of Human Brain Cortex
    Mazzamuto, G.
    Costantini, I
    Neri, M.
    Roffilli, M.
    Silvestri, L.
    Pavone, F. S.
    APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2018, 2018, 10784 : 78 - 85
  • [23] A unified 3D map of microscopic architecture and MRI of the human brain
    Alkemade, Anneke
    Bazin, Pierre-Louis
    Balesar, Rawien
    Pine, Kerrin
    Kirilina, Evgeniya
    Moeller, Harald E.
    Trampel, Robert
    Kros, Johan M.
    Keuken, Max C.
    Bleys, Ronald L. A. W.
    Swaab, Dick F.
    Herrler, Andreas
    Weiskopf, Nikolaus
    Forstmann, Birte U.
    SCIENCE ADVANCES, 2022, 8 (17):
  • [24] Automatic fetal brain extraction from 2D in utero fetal MRI slices using deep neural network
    Li, Jinpeng
    Luo, Yishan
    Shi, Lin
    Zhang, Xin
    Li, Ming
    Zhang, Bing
    Wang, Defeng
    NEUROCOMPUTING, 2020, 378 : 335 - 349
  • [25] Automatic 3D segmentation of multiphoton images: a key step for the quantification of human skin
    Decenciere, Etienne
    Tancrede-Bohin, Emmanuelle
    Dokladal, Petr
    Koudoro, Serge
    Pena, Ana-Maria
    Baldeweck, Therese
    SKIN RESEARCH AND TECHNOLOGY, 2013, 19 (02) : 115 - 124
  • [26] SEMI-AUTOMATIC SEGMENTATION OF THE TONGUE FOR 3D MOTION ANALYSIS WITH DYNAMIC MRI
    Lee, Junghoon
    Woo, Jonghye
    Xing, Fangxu
    Murano, Emi Z.
    Stone, Maureen
    Prince, Jerry L.
    2013 IEEE 10TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2013, : 1465 - 1468
  • [27] Combining a deformable model and a probabilistic framework for an automatic 3D segmentation of prostate on MRI
    Nasr Makni
    P. Puech
    R. Lopes
    A. S. Dewalle
    O. Colot
    N. Betrouni
    International Journal of Computer Assisted Radiology and Surgery, 2009, 4 : 181 - 188
  • [28] Semi-automatic segmentation for 3D motion analysis of the tongue with dynamic MRI
    Lee, Junghoon
    Woo, Jonghye
    Xing, Fangxu
    Murano, Emi Z.
    Stone, Maureen
    Prince, Jerry L.
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2014, 38 (08) : 714 - 724
  • [29] Combining a deformable model and a probabilistic framework for an automatic 3D segmentation of prostate on MRI
    Makni, Nasr
    Puech, P.
    Lopes, R.
    Dewalle, A. S.
    Colot, O.
    Betrouni, N.
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2009, 4 (02) : 181 - 188
  • [30] Automatic 3D Modeling of Structural and Mechanical Components from Point Clouds
    Perez-Perez, Yeritza
    Golparvar-Fard, Mani
    El-Rayes, Khaled
    CONSTRUCTION RESEARCH CONGRESS 2018: CONSTRUCTION INFORMATION TECHNOLOGY, 2018, : 501 - 511