Some Strong Laws of Large Numbers for Double Arrays of Random Sets with Gap Topology

被引:0
作者
Nguyen Van Quang [1 ]
Duong Xuan Giap [1 ]
Bui Nguyen Tram Ngoc [2 ]
Hu, Tien-Chung [3 ]
机构
[1] Vinh Univ, Dept Math, Nghe An, Vietnam
[2] Dong Nai Univ, Dept Primary Sch & Presch, Dong Nai, Vietnam
[3] Natl Tsing Hua Univ, Dept Math, Hsinchu, Taiwan
关键词
Random set; gap topology; double array; compactly uniformly integrable in the Cesaro sense; MULTIVALUED STRONG LAW; UNBOUNDED RANDOM SETS; COMPLETE CONVERGENCE; RANDOM ELEMENTS; CONVEX-SETS; THEOREMS; SUMS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to state some strong laws of large numbers for a double array of independent (or pairwise independent) random sets with the gap topology under various settings. Our results improve some previously reported results. Some illustrative examples are provided.
引用
收藏
页码:719 / 738
页数:20
相关论文
共 24 条
[1]  
[Anonymous], 1977, PROBABILITY THEORY G
[2]  
[Anonymous], 1993, COMMENT MATH U CAROL
[3]   LAW OF LARGE NUMBERS FOR RANDOM SETS AND ALLOCATION PROCESSES [J].
ARTSTEIN, Z ;
HART, S .
MATHEMATICS OF OPERATIONS RESEARCH, 1981, 6 (04) :485-492
[4]   On complete convergence and the strong law of large numbers for pairwise independent random variables [J].
Bai, P. ;
Chen, P. -Y. ;
Sung, S. H. .
ACTA MATHEMATICA HUNGARICA, 2014, 142 (02) :502-518
[5]   WIJS']JSMAN CONVERGENCE OF CONVEX-SETS UNDER RENORMING [J].
BEER, G .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 22 (02) :207-216
[6]  
Beer G., 1991, SEM AN CONV U MONT 2, V21, P2
[7]  
Castaing C, 2012, J NONLINEAR CONVEX A, V13, P615
[8]  
Castaing C, 2012, J NONLINEAR CONVEX A, V13, P1
[9]   Multidimensional and Multivalued Ergodic Theorems for Measure-Preserving Transformations [J].
Duong Xuan Giap ;
Nguyen Van Quang .
SET-VALUED AND VARIATIONAL ANALYSIS, 2016, 24 (04) :637-658
[10]   AN ELEMENTARY PROOF OF THE STRONG LAW OF LARGE NUMBERS [J].
ETEMADI, N .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 55 (01) :119-122