Multi-layer Perceptron Architecture for Kinect-Based Gait Recognition

被引:8
作者
Bari, A. S. M. Hossain [1 ]
Gavrilova, Marina L. [1 ]
机构
[1] Univ Calgary, Calgary, AB T2N 1N4, Canada
来源
ADVANCES IN COMPUTER GRAPHICS, CGI 2019 | 2019年 / 11542卷
基金
加拿大自然科学与工程研究理事会;
关键词
Gait recognition; Human motion; Joint relative triangle area; Joint relative cosine dissimilarity; Neural network; Biometrics;
D O I
10.1007/978-3-030-22514-8_31
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Accurate gait recognition is of high significance for numerous industrial and consumer applications, including virtual reality, online games, medical rehabilitation, video surveillance, and others. This paper proposes multi-layer perceptron (MLP) based neural network architecture for human gait recognition. Two unique geometric features: joint relative cosine dissimilarity (JRCD) and joint relative triangle area (JRTA) are introduced. These features are view and pose invariant, and thus enhance recognition performance. MLP model is trained using dynamic JRTA and JRCD sequences. The performance of the proposed MLP architecture is evaluated on publicly available 3D Kinect skeleton gait database and is shown to be superior to other state-of-the-art methods.
引用
收藏
页码:356 / 363
页数:8
相关论文
共 13 条
[1]   DTW-based kernel and rank-level fusion for 3D gait recognition using Kinect [J].
Ahmed, Faisal ;
Paul, Padma Polash ;
Gavrilova, Marina L. .
VISUAL COMPUTER, 2015, 31 (6-8) :915-924
[2]  
Andersson VO, 2015, AAAI CONF ARTIF INTE, P425
[3]  
Ball A, 2012, ACMIEEE INT CONF HUM, P225
[4]  
Dikovski B, 2014, 2014 37TH INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), P1304, DOI 10.1109/MIPRO.2014.6859769
[5]   Kinect Sensor Gesture and Activity Recognition New applications for consumer cognitive systems [J].
Gavrilova, Marina L. ;
Wang, Yingxu ;
Ahmed, Faisal ;
Paul, Padma Polash .
IEEE CONSUMER ELECTRONICS MAGAZINE, 2018, 7 (01) :88-94
[6]   Individual recognition using Gait Energy Image [J].
Han, J ;
Bhanu, B .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (02) :316-322
[7]  
Han Ju, 2004, CVPR 2004, pII
[8]  
Ioffe S, 2015, 32 INT C MACH LEARN
[9]   A framework for gait-based recognition using Kinect [J].
Kastaniotis, Dimitris ;
Theodorakopoulos, Ilias ;
Theoharatos, Christos ;
Economou, George ;
Fotopoulos, Spiros .
PATTERN RECOGNITION LETTERS, 2015, 68 :327-335
[10]  
Li DP, 2015, PROC CVPR IEEE, P213, DOI 10.1109/CVPR.2015.7298617